Semantically Secured Non-Deterministic Blum–Goldwasser Time-Based One-Time Password Cryptography for Cloud Data Storage Security

Main Article Content

Kavitha K, Saravanan V

Abstract

The security level of outsourced data is significant in cloud storage. Few research works have been designed for secured cloud data storage. However, the data security level was lower because the authentication performance was not effective. In order to overcome such drawbacks, a Semantically Secured Non-Deterministic Blum–Goldwasser Time-Based One-Time Password Cryptography (SSNBTOPC) Technique is proposed. The SSNBTOPC Technique comprises three steps, namely key generation, data encryption and data decryption for improving cloud data storage security with lower cost. Initially, in SSNBTOPC Technique, the client registers his/her detail to the cloud server. After registering, the cloud server generates the public key and secret key for each client. Then, clients in cloud encrypt their data with the public key and send the encrypted data to the cloud server for storing it in the database. Whenever the client needs to store or access the data on cloud storage, the client sends the request message to the cloud server. After getting the requests, cloud server authenticates the clients using their secret key and Time-based One-Time Password (TOTP). After the verification process, SSNBTOPC Technique allows only authorized clients to get data on cloud storage. During data accessing process, the client data is decrypted with their private key. This helps for SSNBTOPC Technique to improve the cloud storage security with a minimal amount of time. The SSNBTOPC Technique carried outs the experimental evaluation using factors such as authentication accuracy, computational cost and data security level with respect to a number of client and data. The experimental result shows that the SSNBTOPC Technique is able to increases the data security level and also reduces the computational cost of cloud storage when compared to state-of-the-art works.

Article Details

Section
Articles