
International Journal on Future Revolution in Computer Science & Communication Engineering ISSN: 2454-4248
Volume: 4 Issue: 1 38 – 41

38

IJFRCSCE | January 2018, Available @ http://www.ijfrcsce.org

Query Profiler Versus Cache for Skyline Computation

R. D. Kulkarni

Department of Computer Science and Engineering

Walchand College of Engineering

Sangli, Maharashtra, India

 rupaliwaje@rediffmail.com

B. F.Momin

Department of Computer Science and Engineering

Walchand College of Engineering

Sangli, Maharashtra, India

bfmomin@yahoo.com

Abstract— A skyline query is multi preference user query which generates the best objects from a multi attributed dataset. Skyline computation

in an optimum time becomes a real challenge when the number of user preference are large and size of the dataset is also huge. When such a big

data gets queried at large, response time optimization is possible through maintenance of the metadata about the pre-executed skyline queries.

We have earlier proposed, a novel structure namely „Query Profiler‟ which preserves such metadata about the historical queries, raised against a

dataset. Also as the dataset gets queried at large, the dimensions of user queries often overlap and queries get correlated. Such correlations in

user queries and the availability of metadata about the earlier queries, combined together speed up the computation time and the optimization of

the response time of the further skyline computation becomes possible. In this paper, we assert the efficacy of the Query Profiler by comparing

its performance with the parallel techniques which utilize cache mechanism for optimization of the response time. We also present the

experimental results which assert the efficacy of the proposed technique.

Keywords- Skyline queries; Correlated Queries; Query Profiler

__*****___

I. INTRODUCTION

The skyline queries return those objects from the dataset

which dominate rest of the objects on the dimension of user‟s

concern. The skyline queries are used extensively in the field

of decision support system concerning to the areas like market

research, customer information services, location based route

determination etc. Skyline computation attracts the attention of

the database community in the area of optimization of the

response time as the datasets used for the computation are

tending huge and they are also queried at large. It is also

observed that, as the large number of queries are raised against

the same dataset the dimensions of the user queries often

overlap. For example, a person interested in buying a house

may generate a skyline query for getting information about all

such houses which are multistory, nearer to the schools and are

cheaper. And another user may query the same dataset for

finding all such houses which are nearer to the schools and are

cheaper. In the above example the dimensions of the queries

overlap (in fact, dimensions of the later query are subset of the

dimensions of the earlier query.) Such queries are correlated

queries. If the results of the earlier queries are preserved in

some form, the skyline of the later query can be computed

faster.

 We have previously proposed a data structure namely

Query Profiler (QP) [1] for managing the metadata about the

historical queries raised against a dataset. In this paper, we

reutilize the concept of QP and make new contributions as

follows.

1) We compare the performance of QP with the parallel

techniques which used cache memory for managing the

metadata of the pre-executed skyline queries.

2) We present the experimental results and the analysis for

asserting the efficiency of QP.

The remainder of the paper has been organized as follows.

Section II details the literature of the parallel techniques.

Section III highlights the core idea of QP in brief and Section

IV elaborates the skyline computation for the correlated

queries. The next Section V covers the experimental results

and the related analysis and the last Section VI highlights the

conclusions and the directions for the further extensions.

II. RELATED WORK

Concerning to the applicability of the skyline in the various

fields, computing environments and architectures, numerous

skyline computing techniques have evolved. This section

briefs the major techniques in accordance with the research

objective mentioned above.

The notion of skyline queries and the skyline operator [2]

was presented in 2001. Since then, to suit to the era of

centralized datasets, various techniques evolved for computing

skyline. To speed up the computation and reduce the number

of dominance tests to be carried out, few of the techniques

used pre-processing techniques on the dataset like sorting the

dataset, partitioning the dataset using the patterns observed in

the data etc. Few techniques from this category are Linear

Elimination Sort of Skyline (LESS) [3], Sort Filter Skyline

(SFS) [4], Sort and Limit Skyline (SaLSa) [5]. Few techniques

used efficient indexing to speed up the dataset access using

various single or multi-dimensional index structures like B

trees, Z trees, R trees, kd- trees etc. The techniques which used

dataset indexing include Nearest Neighbor (NN) [6], ZSearch

[7], The Branch and Bound Skyline (BBS) [8] etc. With the

advancements in network architectures and the distributed

storage of the dataset, the techniques opted parallel

computation of the skyline. The techniques used parameters

like smart distribution of the datasets at the nodes and efficient

network organizations. Some of the techniques pertaining to

International Journal on Future Revolution in Computer Science & Communication Engineering ISSN: 2454-4248
Volume: 4 Issue: 1 38 – 41

39

IJFRCSCE | January 2018, Available @ http://www.ijfrcsce.org

these features are Distributed Skyline (DSL) [9], SKYPEER

[10], Skyline Space Partitioning (SSP) [11] etc. With the

evolution of the parallel programming paradigms like

MapReduce, few of the traditional skyline computing

techniques were converted to suit to this paradigm as

mentioned in [12]. And the other similar techniques are MR-

Angel [13] and SKY-MR [14]. With the advent of modern

hardware like multicore processors, GPUs, FPGAs the skyline

techniques were developed to exploit the best features of these

hardware. Such techniques include GPU based Nested Loop

(GNL) [15], SkyAlign [16], FPGA based techniques as in [17-

18], SMS based techniques [19].

Our contribution which uses QP for computation of the

skylines, differs from these research efforts in various ways.

First of all, unlike the caching approach mentioned in [20], our

technique uses the properly indexed and managed data

structure QP [1] to avoid the limitations of the cache control.

In a busy system, it is unsafe to rely on the metadata managed

in the cache as it may get wiped off. Secondly, through use of

QP the computation technique becomes free from any sort of

data re-processing and complex memory management

requirements as done in [10, 21-22]. By making use of QP, the

correlations observed in the skyline queries and the metadata

of the pre-executed skyline queries is used together to

optimize the response time of further skyline computation.

 The basic concepts have been detailed in the next sections

III and IV. Without loss of generality, the discussions made in

the next sections assumes that a word „query‟ refers to a

„skyline query‟Ease of Use

III. QUERY PROFILER

Query Profiler (QP) is a main memory data structure which

aims at preserving the metadata of all the queries raised

against the dataset. It is managed in the main memory and it

has fields like QP = {QId, Att, S, Sb, Pr, Qf} where QId is an

unique query id for each of the skyline query that is executed,

Att is a set of dimensions that occurred in the query, S refers to

the computed skyline, Sb is a set of all those QIds to which the

query attributes appeared as subset, Pr is a set of all those

QIds to which the query attributes appeared as partial set

(explained shortly in the next section) and Qf refers to the

frequency of the occurrence of the query.

This QP is a well-organized data structure that has single

entry for all the unique queries and it is all well-indexed using

a hash index. This allows fast retrieval of the metadata of any

entry. QP is also sorted in the background on wo parameters

viz. the query frequency Qf and the set of query attributes Att.

The first parameter allows the most popular queries to be on

the upper side in QP and the later parameter keeps the scope

for quickly determining the type of correlations, the query

generates with the other queries.

Using the above management strategies, size of QP is kept

to the least and also retrieval of the metadata is served fast.

Both these features make QP an efficient structure and a

quicker assistance in skyline computation of the correlated

queries. The details of the same has been discussed in the next

section.

IV. SKYLINE COMPUTATION FOR CORRELATED QUERIES

When the dataset gets queried at large, chances are high that

the dimensions of the queries often overlap. Such overlapping

generates the correlations in the skyline queries raised by the

users. These correlations are of following types.

1) An Exact correlation: It exists when a quey carries all

the dimensions exactly same as that of some earlier query

executed on the dataset.

2) A Subset Correlation: It exists when a quey carries few

of its dimensions which are subset of dimensions of one or

more earlier queries.

3) A Partial Correlation: It exists when a quey carries few

of its dimensions which are subset of dimensions of some

previous queries and one/more newer dimensions are present

in the query.

4) A Novel Correlation: It exists when a query carries

those dimensions which have never come in the dimesions of

any of the earlier query.

When such correlations exist in the user queries, and

metadata about the results of earlier queries is available in the

form of QP, the computations of the skylines of the further

queries is done as elaborated next.

The skyline for a query which has an exact correlation is

returned from QP itself as it happens to be a repeat query and

its skyline already exists in QP. The skyline for a query which

has a subset correlation is nothing but the intersection of the

skylines of all those queries with whom the current query has a

subset type of correlation. Thus, for the queries which carry

exact or subset correlations, use of QP makes possible the

complete avoidance of the dataset access and skylines are

returned immediately. As the dataset access and the costliest

operation of dominance tests gets eliminated, the response

time is improved. The dataset access, however cannot be

avoided for the other two kinds of correlations viz. partial and

novel correlations as there exists occurrence of newer query

dimensions. The skyline for a query which has a partial

correlation is computed as described next. The union of the

skylines of all those queries with whom the current query

persists a partial kind of correlation is computed first. This

union becomes the first window of tuples to carry out the

dominance tests amongst the dataset tuple and assists to gear

up the computation. And for the skylines of the queries which

have novel correlations, the dataset access is obviously

mandatory.

Given this elaboration, it is clear that use of QP improves

the response time of the skyline computation. There exist

techniques like [20] which use cache memory for maintaining

such metadata of the pre-executed queries. However, use of

cache has following limitations.

1) The data managed in cache cannot be considered to be

available at all the times and cache gets cleared and re-

used to make room for newer data.

2) For a huge dataset and queries having large number

attributes, more and more cache memory is required as

the number of queries increase. And there exists a

limitation on amount of cache allocations.

International Journal on Future Revolution in Computer Science & Communication Engineering ISSN: 2454-4248
Volume: 4 Issue: 1 38 – 41

40

IJFRCSCE | January 2018, Available @ http://www.ijfrcsce.org

3) Naïve cache segments are not indexed and hence the

data retrieval time gets affected.

4) The cache control becomes even poorer when the

distributed computing environment exists for the

skyline computation.

As against to these points, the management of QP s

benefited a lot from better, cheaper availability of main

memory and being hash indexed the retrieval time of data is

much better than the naïve cache segments. Also, the concept

of QP has been extended by us in further research efforts

detailed in [23-24] for the distributed as well as update

intensive environments. This efficacy of QP, is implied by the

experimental results. The next section covers the experimental

work and the related results.

V. EXPERIMENTAL WORK AND RESULTS

The aim of these experiments is to compare the response time

of the skyline computation when QP is used to maintain the

metadata of the pre-executed skyline queries against the use of

cache memory used for the same purpose. The experimental

setup used for these experiments incorporates, an Intel core i-3

2100 CPU, 3.10 GHz with 2GB RAM and with the Windows 7

environment. The traditional Block Nested Loop (BNL) [2] has

been used for the skyline computation. Total two experiments

have been carried out. A centralized dataset available at

www.basketball.com is assumed for the experiments. Both

these experiments compare the performance of three

techniques: 1) QP: technique which implements QP, 2) JC:

technique which has implemented JCS cache and 3) NQP:

technique which computes the skyline without assistance of

any metadata like the one maintained in QP. The parameters set

for these experiments are: n: dataset cardinality (number of

tuples), d: dimensionality of the dataset and q: number of

queries.

The first experiment compares the response times of these

two techniques, when the parameter of the number of queries is

varied. The parameters set for this experiment are: n=3925, d=5

and the parameter q is varied from 5 to 35. The following

Fig. 1, depicts the results obtained.

Figure 1. Effect on response time upon variace of number of queries

As shown in the Figure 1 above, the QP technique delivers

the optimum performance. This performance is justified by the

fact that, due to use of QP, the dataset access is cut for the

queries correlated by the exact and subset correlation. Also as

QP is well indexed, it exhibits better performance over the

naïve cache segments used in the JC technique. And as the

NQP technique makes the dataset access for each of the skyline

computation (without taking the benefits of the correlations

observed amongst the queries) it exhibits the worst

performance.

The second experiment studies the same comparison when

the parameter of the dataset cardinality is varied. The

parameters set for this experiment are: q=25, d=5 and the

parameter n is varied from 3000 to 21,000. The results

observed have been shown below in Fig. 2.

Figure 2. Effect on response time upon variance of dataset cardinality

 The results shown in Figure 2 above, assert that the QP

technique delivers the optimum performance. This performance

is vindicated by the fact that, when the number of queries

(correlations) are kept constant, the role of indexing in

metadata retrieval is vital. And QP is hash indexed as against

the naïve cache segments used in the JC technique. Again, the

NQP technique with no assistance of metadata, shows the worst

performance.

The inferences drawn from the above two experiments are

analysed as next. If total q number of queries are executed

against the dataset that contains n number of tuples, then the

time complexity for the techniques that access the dataset for

each skyline computation. Becomes O (n*q). However, when

queries are correlated there is always scope for the

optimization of the response time. Let qe and qs denote the

number of queries that are correlated by the exact and subset

correlations respectively and let qp and qn denote the number

of queries that are correlated by the partial and novel

correlations respectively. Then, the time complexity for the

techniques that use QP is denoted as O (n*(qp+qn)) + O

(qe_+qs). This is obvious as the dataset access avoided (in

case of the exact and subset correlations) and it is done only

when mandatory (in case of the partial correlations). So, we

observe that, with the assistance of QP this becomes possible

and the optimization of the response time of the skyline

computation is achieved.

The next Section VI concludes the discussion.

http://www.basketball.com/

International Journal on Future Revolution in Computer Science & Communication Engineering ISSN: 2454-4248
Volume: 4 Issue: 1 38 – 41

41

IJFRCSCE | January 2018, Available @ http://www.ijfrcsce.org

VI CONCLUSIONS AND FURURE SCOPE

In this paper, we revisited the concept of QP, proposed earlier

by us and compared its performance with the techniques that

utilize cache memory for maintenance of the metadata of the

pre-executed skyline queries. We exhibited this comparison,

by means of the experiments carried out and presented the

analysis of the techniques.

We find that, when a dataset gets queried a lot, the

correlations exist in the user queries. These correlations prove

very much useful to optimize the response time of further

skyline computation when the metadata of the historical queries

raised against the dataset is preserved in an efficient manner as

done in QP. The use of cache mechanism, done for the same

purpose suffers from the several limitations.

The concept of QP can be further be tested in parallel

computing environments as well as in the scenario where the

dataset experiences parallel updates. The concept can also be

implemented through the parallel programming paradigms like

MapReduce. In near future, we would like to extend the work

on the above aspects.

 REFERENCES

[1] R. D. Kulkarni and B.F. Momin,“Skyline computation for

frequent queries in update intensive environment”, Elsevier

Journal of King Saud University - Computer and Information

Sciences, Vol. 28, No. 4, pp.447-456.

[2] S. Borzsonyi, D. Kossmann and K. Stocker, “The skyline

operator”, Proc. IEEE Conf. on Data Engineering, 2001, pp.

421-430.

[3] P. Godfrey, R. Shipley, J. Gryz, “Maximal vector

computation in Large Data Sets”, Proc. Conf. on Very Large

Databases, Trondheim, Norway, 2005, pp. 229-240.

[4] J. Chomicki, P. Godfrey, J. Gryz, D. Liang, “Skyline with

presorting”, Proc. IEEE Conf. on Data Engineering, 2003, pp.

717-719.

[5] I. Bartolini, P. Ciaccia, M. Patella, “SaLSa: Computing the

skyline without scanning the whole sky”, Proc. Conf. on

Information and Knowledge Management, 2006, pp. 405-411.

[6] D. Kossmann, F. Ramsak, S. Rost, “Shooting stars in the sky:

An online algorithm for skyline queries”, Proc. Conf. on Very

Large Databases, 2002, pp. 275-286.

[7] K. Lee, B. Zhang, H. Li, W.-C. Lee, “Approaching the skyline

in Z order”, Proc. Conf. on Very Large Data Bases, 2007, pp.

279-290.

[8] D. Papadias, Y. Tao, G. Fu, B. Seeger, “Progressive skyline

computation in database systems”, ACM Trans. on Database

Systems, Vol. 30(1), 2005, pp. 41–82.

[9] P. Wu, C. Zhang, Y. Feng, B. Zhao, D. Agrawal, A. Abbadi,

“Parallelizing skyline queries for scalable distribution”, Proc.

Conf. on Extending Database Technology, 2006, pp. 112-130.

[10] T. Xia, D. Zhang, “Refreshing the sky: The compressed

skycube with efficient support for frequent updates”, Proc.

Conf. on Management of Data, 2005, pp.493-501.

[11] S. Wang, B. Ooi, A. Tung, L. Xu, “Efficient skyline query

processing on peer-to-peer networks”, Proc. IEEE Conf. on

Data Engineering, 2007, pp. 1126-1135.

[12] B. Zhang, S. Zhou, J. Guan, “Adapting skyline computation to

the MapReduce framework: Algorithms and experiments”,

Proc. Conf. on Database systems for Advanced Applications,

2011, pp. 403–414.

[13] L. Chen, K. Hwang, J. Wu, “MapReduce skyline query

processing with a new angular partitioning approach”, Proc.

IEEE Conf. on Parallel and Distributed Processing

Symposium, 2012, pp. 403–414.

[14] Y. Park, J.-K. Min, K. Shim, “Parallel computation of skyline

and reverse skyline queries using MapReduce”, Journal on

VLDB Endowment , Vol. 6(14), 2013, pp. 2002–2013.

[15] W. Choi, L. Liu, B. Yu, “Multi-criteria decision making with

skyline computation”, Proc. IEEE Conf. on Information

Reuse and Integrationpp, 2012, pp.316-323.

[16] K. Bøgh, I. Aasent, M. Maghni, “Efficient GPU-based skyline

computation”, Proc. Wksp. on Data Management on New

Hardware, 2013, Article no.5.

[17] L. Woods, G. Alonso, J. Teubner, “Parallel computation of

skyline queries”, Proc. IEEE Conf. on Field-Programmable

Custom Computing Machinesx, 2012, pp. 1-8.

[18] L. Woods, G. Alonso, J. Teubner, “Parallelizing data

processing on FPGAs with shifter lists”, ACM Trans. on

Reconfigurable Technology and Systems, Vol. 8(2), 2015.
[19] R. Anurag, A. Bhattacharya, “SMS: Stable Matching

Algorithm using Skylines”, Proc. Conf. on Scientific and

Statistical Database Management, 2016, Article No.24.
[20] A. Bhattacharya, P. Teja, S. Dutta, “Caching stars in the sky:

A semantic caching approach to accelerate skyline queries”,

Proc. Conf. on Database and Expert Systems Applications,

2011, pp.493-501.

[21] J. Lee, S. Hwang, “QSkycube: Efficient skycube computation

using point-based space partitioning”, Journal on VLDB

Endowment, 2010, pp.185-196.

[22] J. Pei , “Computing closed skycubes”, Journal on VLDB

Endowment, 2010, pp. 838-847.

[23] R. D. Kulkarni, B.F. Momin,“Parallel skyline computation for

frequent queries in distributed environment", Proc. IEEE

Conf. on Computational Techniques in Information and

Communication Technologies, 2016, pp. 95-102.

[24] R. D. Kulkarni, B.F. Momin,“SCP: Skyline computation

planner for distributed, update intensive environment",

Springer SIST Series, Information and Communication

Technology for Intelligent Systems, (ICTIS-2017) Vol.(1),

2017, pp.399-408.

