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Abstract: 

Internet of Things (IoT) is revolutionising technical environment of traditional methods as well as has applications in smart cities, smart 

industries, etc. Additionally, IoT enabled models' application areas are resource-constrained as well as demand quick answers, low latencies, 

and high bandwidth, all of which are outside of their capabilities. The above-mentioned issues are addressed by cloud computing (CC), which 

is viewed as a resource-rich solution. However, excessive latency of CC prevents it from being practical. The performance of IoT-based smart 

systems suffers from longer delay. CC is an affordable, emergent dispersed computing pattern that features extensive assembly of diverse 

autonomous methods. This research propose novel technique resource allocation and task scheduling for device-device communication in 

mobile Cloud IoT environment based on 5G networks. Here the resource allocation has been carried out using virtual machine based markov 

model infused wavelength division multiplexing. Task scheduling is carried out using meta-heuristic moath flame optimization with chaotic 

maps. So, by scheduling tasks in a smaller search space, system resources are conserved. We run simulation tests on benchmark issues and 

real-world situations to confirm the effectiveness of our suggested approach. The parameters measured here are resource utilization of 95%, 

response time of 89%, computational cost of 35%, power consumption of 38%, QoS of 85%. 
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1. Introduction: 

Ground breaking season of PC labourer farms gave rise to 

the spectacular innovation of CC, which aids in putting an 

end to virtualization trends [1]. An "association" that 

connects programming, foundation as an aid, and platform 

as a service is how appropriate handling is described (PaaS). 

Everyone has a unique general thesis about business. 

Purpose of appropriated figuring is to design an application 

on a virtual asset of PCs that is used to serve clients 

regardless of the purchased model [2]. Additionally, as the 

cloud is based on the pillars of two fundamental 

foundations, such as CC and networking, Internet 

connectivity and infrastructure are crucial. The network can 

be utilised for CC and other applications in numerous cloud 

apps [3]. The cloud's infrastructure and capabilities are 

integrated with the QoS distribution network. As a result, 

more application service providers (ASPs) are aware of the 

difference between the operation and actual usage of 

necessary infrastructure as well as have made use of 

infrastructure that was leased from infrastructure providers. 

For instance, Force Square created the first cloud resource 

measurement resource by using Amazon EC2 Analytics for 

more than 5 million days while saving 53% of its value to 

fulfil measurable needs [4]. Each edge-node in a cyber-

physical ecosystem is envisioned as an IoT device that may 

dynamically collaborate with other network nodes to carry 

out one or more user-assigned activities. Although these 

infrastructures as well as computer resources are given by 

CSP, IoT networks typically have restricted access to 

resources like processing power, storage, network 

bandwidth, and RAM. IoT devices' sensors generate an 

enormous amount of real-time data. Resource scheduling is 

the CC domain's greatest obstacle (RS). Using the proper 

hardware techniques and infrastructure, RS must be 

performed while maintaining at least satisfying levels of 

QoS [5]. According to a recent survey, the broker is often 

responsible for matching up requested end user tasks with 

the available virtualized hardware, which is typically done 

using a virtual machine (VM). The scheduling procedure is 

carried out by the broker during mapping. The process of 

assigning tasks to the appropriate VMs for implementation 

has grown increasingly difficult with the development of 
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several resources that are now available. Few VMs may be 

under- or over-utilized when an ineffective scheduling 

procedure is used, and the implication of this situation 

results in a decline in the cloud system's overall 

performance. The RS issues that fall under the category of 

NP-hard optimization issues. It should be noted that the 

words cloudlet as well as task scheduling are also 

appropriated in contemporary computer science literature for 

process of matching submitted end-user tasks to available 

VMs [6]. 

The research contribution is as follows: 

• To propose novel technique resource allocation and 

task scheduling for device-device communication 

in mobile Cloud IoT environment based on 5G 

networks 

• The resource allocation has been carried out using 

virtual machine based markov model infused 

wavelength division multiplexing 

• Task scheduling is carried out using meta-heuristic 

moath flame optimization with chaotic maps     

 

2. Background study: 

Over past few years, there is significant improvement in 

academic interest in SLA-based resource allocation [7] in 

cloud data centres. In work [8], a dynamic scheduling 

approach for context-aware, SOA-based applications' 

response time SLA was developed. In order to minimise 

taxing the service tier resources in accordance with a SLA 

measure, the authors of [9] suggested rate-limiting requests. 

The inventors of [10] employed a dynamic scheduling 

technique that is capable of providing SLAs for CPU service 

share in server clusters. Previous studies focused on IoT 

cloud allocation methodologies took into account execution 

speed and security groupings. A combinatorial auction 

system, for instance, was suggested by the author in [11] as 

a way to effectively allocate resources and decrease the 

penalty when there were execution time restrictions. A 

framework for fulfilling application needs for security in a 

cloud for processing IoT data was proposed in study [12]. 

Over past few years, there is significant improve in 

academic interest in SLA-based resource allocation in cloud 

data centres. In work [13], a dynamic scheduling technique 

for context-aware, SOA-based applications' response time 

SLA was developed. In order to prevent overtaxing the 

service tier resources as measured by a SLA metric, the 

developers of [14] have suggested rate-limiting requests. In 

their study [15], the authors devised a dynamic scheduling 

technique that can ensure SLAs for CPU service share in 

server clusters. Previous studies focused on IoT cloud 

allocation methodologies took into account execution speed 

and security groupings. For instance, work [16] suggested 

using a combinatorial auction system to effectively allocate 

resources and lower the penalty when there were execution 

time limits. In order to fulfil application requirements for 

security in a cloud for processing IoT data, author [17] 

presented a framework. In order of earliest finish time, tasks 

are sorted and opportunistically added to open processor idle 

time slots. In terms of robustness and performance, HEFT is 

rated as the top scheduling heuristic method out of twenty 

[18]. [19] presents a mixed-integer linear programming 

model to simulate offloading dependent jobs with time 

limitations in an IoT-fog system. IoT devices are 

disregarded in this work, which treats the cloud computing 

layer as if it were a CPU with infinite processing power. The 

top K new solutions are selected as the Pareto set after the 

new solutions are sorted by crowding distance. In [20], 

fuzzy dominance is used to enhance MOHEFT's 

performance, which maximises both makespan and cost 

index. Constrained optimization challenges in cloud fog 

platforms were related task scheduling problems that the 

author [21] formulated. It is suggested to handle these issues 

using an LBP-ACS strategy. 

 

3. Proposed Mobile Cloud IoT for resource 

allocation with scheduling: 

This section discuss novel technique resource allocation and 

task scheduling for device-device communication in mobile 

Cloud IoT environment based on 5G networks. Here the 

resource allocation has been carried out using virtual 

machine based fuzzy rules infused wavelength division 

multiplexing. Task scheduling is carried out using meta-

heuristic moath flame optimization with chaotic maps. The 

system architecture is shown in figure-1. 

 
Figure-1 Proposed Mobile cloud IoT environment 
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Network Model: 

It is assumed that all resource nodes in a cloud computing 

system must communicate with one another. Therefore, the 

overall cost of network connections should be determined 

for each solution to the RA problem. It is presumed that 

every resource communicated with every other resource. 

These messages' overall costs are assessed and taken into 

consideration as an objective function. the Tc symbol stands 

for the function called total cost. The suggested algorithm 

makes an effort to reduce this function. Tc is calculated 

using equation (1). 

𝑇𝑐 =
∑𝑗=1
|𝑉𝑠|  (𝑑𝑗

𝑟×𝑑𝛿)

𝑝
                                                           (1) 

As a result, we specify three service events in the system 

model: 1) A user identified by the letter el submits a request 

to the cloud for security service number l; 2) A user, 

represented by the symbol eh, submits a request to the cloud 

for security service eh; and 3) When a security service 

transaction is complete, linked VIs are released, as indicated 

by the symbol ef. Nl and Nh, respectively, represent number 

of security services l and h that are now being provided in 

the cloud. Therefore, system state is given as: 𝑆 = {𝑠 ∣ 𝑠 =

⟨𝑠̂, 𝑒⟩} 

where 𝑠̂ = ⟨𝑁𝑙 , 𝑁ℎ⟩, 𝑒 ∈ {𝑒𝑙 , 𝑒ℎ, 𝑒𝑓}, and 0 ≤ 𝛼𝑙𝑁𝑙 + 𝛼ℎ𝑁ℎ ≤

𝑥(𝑠, 𝑎) − 𝜏(𝑠, 𝑎)𝑦(𝑠, 𝑎), 𝐾. 

Based on service revenues and operating costs, the system's 

net return can be assessed by eqn (2): 

𝑥(𝑠, 𝑎) − 𝜏(𝑠, 𝑎)y(s, a)                                   (2) 

Where x(s, a) represents cloud's net lump sum earnings 

when decision an is made at current state s, y(s, a) represents 

service holding cost rate when decision an is made and the 

cloud is in state s, and τ (s, a) represents anticipated service 

time from current state s to next state. It is calculated by eqn 

(3) 

𝑥(𝑠, 𝑎) = {

0, 𝑎⟨𝑠̂,𝑒) = 0,

𝑅𝑙, 𝑎⟨𝑠̂,𝑒𝑙⟩ = 1,

𝑅ℎ, 𝑎⟨𝑠̂,𝑒ℎ⟩ = 1,
                                    (3) 

where Rl and Rh are cloud's earnings when requests for l 

and h security services are approved, respectively. The 

occupied cloud resources are proportional to service holding 

cost rate y(s, a), which is given by eqn (4) 

 𝑦(𝑠, 𝑎) = {

𝛼𝑙𝑁𝑙 + 𝛼ℎ𝑁ℎ, 𝑎⟨𝑠̂,𝑒⟩ = 0,

𝛼𝑙(𝑁𝑙 + 1) + 𝛼ℎ𝑁ℎ, 𝑎⟨𝑠̂,𝑒𝑙⟩ = 1

𝛼𝑙𝑁𝑙 + 𝛼ℎ(𝑁ℎ + 1), 𝑎⟨𝑠̂,𝑒ℎ⟩ = 1

             (4) 

A decision epoch is point in time when any of occurrences, 

such as the arrival of a service request l or h or completion 

of a security service and release of VIs' allotted resources, 

occurs. An exponential distribution describes the amount of 

time that passes between two decision points. Given present 

state s and the action a, denote τ (s, a) as anticipated time 

interval between 2 decision epochs by eqn (5). 

𝜏(𝑠, 𝑎) =

{
 

 [𝛾 + 𝑎⟨𝑠̂,𝑒𝑙⟩𝜇𝑙]
−1
, 𝑒 = 𝑒𝑙

[𝛾 + 𝑎⟨𝑠̂,𝑒ℎ⟩𝜇ℎ]
−1
, 𝑒 = 𝑒ℎ

𝛾−1, 𝑒 = 𝑒𝑓 

                         (5) 

 

Virtual Machine Based Markov Model Infused 

Wavelength Division Multiplexing In Resource 

Allocation: 

Virtual machine allocation is defined as the assignment of a 

collection of VMs to a collection of physically located 

machines in a data centre. The term "virtualization" refers to 

the ability to execute several operating system instances on a 

single physical machine, maximising use of the hardware. 

Multiple users can share the computer resource pool in 

accordance with the actual demand thanks to the usage of 

virtualization technology. Therefore, the VM allocation 

system requires to be adjusted to meet needs for resource 

utilisation while minimising user costs. Figure 2 displays 

how VM resources are allocated in CC. 

 
Figure-2 VM resource allocation 

 

For a state 𝑠 = ⟨𝑠̂, 𝑒⟩where 𝑠̂ = ⟨𝑁𝑙 , 𝑁ℎ⟩, 𝑒 ∈ {𝑒𝑙 , 𝑒ℎ, 𝑒𝑓}, and 

action 𝑎 = 0 the next state  

𝑗1 = ⟨𝑁𝑙 , 𝑁ℎ, 𝑒𝑙⟩, 𝑗2 = ⟨𝑁𝑙 , 𝑁ℎ, 𝑒ℎ⟩, 𝑗3 = ⟨𝑁𝑙 −1,𝑁ℎ , 𝑒𝑓⟩(𝑁1 ≥

1), and 𝑗4 = ⟨𝑁𝑙 , 𝑁ℎ − 1, 𝑒𝑓⟩(𝑁ℎ ≥ 1). q(j|s, a) are given as 

by eqn (6) 

𝑞(𝑗 ∣ 𝑠, 𝑎) = {

𝜆𝑙𝜏(𝑠, 𝑎), 𝑗 = 𝑗1
𝜆ℎ𝜏(𝑠, 𝑎), 𝑗 = 𝑗2
𝑁𝑙𝜇𝑙𝜏(𝑠, 𝑎), 𝑗 = 𝑗3
𝑁ℎ𝜇ℎ𝜏(𝑠, 𝑎), 𝑗 = 𝑗4

             (6) 

Note that 0 ≤ 𝛼𝑙𝑁𝑙 + 𝛼ℎ𝑁ℎ ≤ 𝐾 For the current state 𝑠 =

⟨𝑠̂, 𝑒𝑙⟩ and the action a = 1, the next state can be 𝑗5 =

⟨𝑁𝑙 + 1,𝑁ℎ , 𝑒𝑙⟩, 𝑗6 = ⟨𝑁𝑙 + 1,𝑁ℎ, 𝑒ℎ̅̅ ̅⟩  

, 𝑗7 = ⟨𝑁𝑙 , 𝑁ℎ, 𝑒𝑓⟩, and 𝑗8 = ⟨𝑁𝑙 + 1,𝑁ℎ − 1, 𝑒𝑓⟩(𝑁ℎ ≥ 1) by 

eqn. (7) 

Thus, q(j|s, a) is given as: 
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𝑞(𝑗 ∣ 𝑠, 𝑎) = {

𝜆𝑙𝜏(𝑠, 𝑎), 𝑗 = 𝑗5
𝜆ℎ𝜏(𝑠, 𝑎), 𝑗 = 𝑗6
(𝑁𝑙 + 1)𝜇𝑙𝜏(𝑠, 𝑎), 𝑗 = 𝑗7
𝑁ℎ𝜇ℎ𝜏(𝑠, 𝑎), 𝑗 = 𝑗8 

         (7) 

Similarly, for state 𝑠 = ⟨𝑠̂, 𝑒ℎ⟩ and action a = 1, the next 

state is 𝑗9 = ⟨𝑁𝑙 , 𝑁ℎ  
′ + 1, 𝑒𝑙⟩, 𝑗10 = ⟨𝑁𝑙 , 𝑁ℎ + 1, 𝑒ℎ⟩, 𝑗11 =

⟨𝑁𝑙 − 1,𝑁ℎ + 1, 𝑒𝑓⟩(𝑁𝑙 ≥ 1), and 𝑗12 = ⟨𝑁𝑙 , 𝑁ℎ, 𝑒𝑓⟩ Thus, 

q(j|s, a) is given as eqn (8) 

𝑞(𝑗 ∣ 𝑠, 𝑎) = {

𝜆𝑙𝜏(𝑠, 𝑎), 𝑗 = 𝑗9
𝜆ℎ𝜏(𝑠, 𝑎), 𝑗 = 𝑗10
𝑁𝑙𝜇𝑙𝜏(𝑠, 𝑎), 𝑗 = 𝑗11
(𝑁ℎ + 1)𝜇ℎ𝜏(𝑠, 𝑎), 𝑗 = 𝑗12

                  (8) 

The expected discounted reward during τ (s, a) satisfies the 

following conditions when the discounted reward model is 

applied by eqn (9): 

𝑧(𝑠, 𝑎) = 𝑥(𝑠, 𝑎) − 𝑦(𝑠, 𝑎)𝐸𝑎
𝑠
{∫

0

𝜏1
 𝑒−𝛼𝑡𝑑𝑡} 

= 𝑥(𝑠, 𝑎) − 𝑦(𝑠, 𝑎)𝐸𝑎
𝑠
{
[1 − 𝑒−𝛼𝜏1]

𝛼
} 

= 𝑥(𝑠, 𝑎) −
𝑦(𝑠, 𝑎)𝜏(𝑠, 𝑎)

1 + 𝛼𝜏(𝑠, 𝑎)
 

𝜈(𝑠) = max𝑎∈𝐴  {𝑧(𝑠, 𝑎) + 𝜆∑𝑗∈𝑆  𝑞(𝑗 ∣ 𝑠, 𝑎)𝜈(𝑗)}      (9) 

where λ = (1 + ατ (s, a))−1. Let w be a finite constant, w = 

λl+λh+K ∗max(μl, μh) < ∞, and λ˜ = w/(w+α). Following 

uniformization, v(s) optimality equation can be found., 

𝜈̃(𝑠) = max𝑎∈𝐴‾  {𝑧̃(𝑠, 𝑎) + 𝜆‾∑𝑗∈𝑆  𝑞‾(𝑗 ∣ 𝑠, 𝑎)𝜈̃(𝑗)} 

where 𝑧̃(𝑠, 𝑎) ≡ 𝑧(𝑠, 𝑎)
1+𝑎𝜏(𝑠,𝑎)

(𝛼+𝑤)𝑟(𝑠,𝑎)
, and 

𝑞̃(𝑗 ∣ 𝑠, 𝑎) = {
1 −

|1−𝑞(𝑠∣𝑠,𝑎)|

𝜏(𝑠,𝑎)𝑤
, 𝑗 = 𝑠

𝑞(𝑗∣𝑠,𝑎)

𝜏(𝑠,𝑎)𝑤
, 𝑗 ≠ 𝑠,

        (10) 

The goal of the model is to reduce the total suggested 

architecture's power consumption, which includes 

processing as well as networking power consumption of 

processing locations and network connecting these 

locations, as shown in equation below eqn (11).  

∑𝑛∈𝑃𝑁  𝑃𝑛 + ∑𝑛∈𝑃𝑁  𝒫𝑛                                         (11) 

The power used by processors for processing and the power 

used to transmit traffic across the network make up the two 

terms in the objective equation. Be aware that each 

processing node choice and the OW mobile units are 

connected by a separate route in our network topology. 

According to equation, the power consumption of this route 

is indicated by a single value by eqn (12). In order to add 

across processing nodes, the second term in equation (11) is 

used. Pn is the symbol for the processor power usage. 

𝑃𝑛 = ∑𝑘∈𝐾  𝑋𝑘𝑛𝐸𝑛 ∀𝑛 ∈ 𝑃𝑁                                            (12) 

where Xkn represents the workload needed to complete job 

k, measured in MIPS and assigned to processing node n. En 

is node processor's energy in watts per MIPS, calculated 

using node's maximal processing power. Given as the 

networking power usage, Pn by eqn (13) 

𝒫𝑛 = ∑𝑘∈𝐾  𝛿𝑘𝑛𝐹𝑘𝑠Ψ𝑛 ∀𝑛 ∈ 𝑃𝑁, 𝑠 ∈ 𝑆𝑁                           (13) 

where Fks is task data rate demand (in Mbps) produced by 

source node s, and δkn is a binary variable that determines 

assignment of task k to processing node Ψn. Between source 

as well as designated processing node, n is the sum of all 

nodes' power per Mbps. The power per Mbps number for 

OW link is determined using specific wavelength colour 

(RYGB) that is being used for the connection. 

The following restrictions are placed on the model: 

Constrained processing allocation by eqn (14) 

𝛼𝑋𝑘𝑛 ≥ 𝛿𝑘𝑛 ∀𝑘 ∈ 𝐾, 𝑛 ∈ 𝑃𝑁 

𝑋𝑘𝑛𝑛 ≤ 𝛼𝛿𝑘𝑛 ∀𝑘 ∈ 𝐾, 𝑛 ∈ 𝑃𝑁 

∑𝑛∈𝑃𝑁  𝛿𝑘𝑛 = 1 ∀𝑘 ∈ 𝐾                                              (14) 

assures that one processing node will be given to each of the 

task k tasks. Constrained processing node capacity by eqn 

(15) 

∑𝑘∈𝐾  𝑋𝑘𝑡 ≤ 𝐶𝑛𝑡  ∀𝑛 ∈ 𝑃𝑁                                          (15) 

Every task k given to a processing node n does not go above 

that node's processing limit. Link capacity limitation by eqn 

(16) 

∑𝑘∈𝐾  ∑𝑆∈𝑆𝑁  𝜆𝑖𝑗
𝑘∈𝑑 ≤ 𝐿𝑖𝑗  ∀𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁𝑚𝑖 , 𝑖 ≠ 𝑗. 

𝑑 ∈ 𝑃𝑁                                                      (16) 

The amount of task k traffic travelling from source s to 

processing node d does not go beyond limit of any link 

connecting nodes I and j. Constraint on flow conservation by 

eqn (17) 

∑𝑗∈𝑁𝑚𝑖
𝑖≠𝑗

 𝜆𝑖𝑗
𝑘𝑠𝑑 − ∑𝑗∈𝑁𝑚𝑖

𝑖≠𝑗

 𝜆𝑗𝑖
𝑘𝑠𝑑 = {

𝐿𝑘𝑠𝑑  if 𝑖 = 𝑠
−𝐿𝑘𝑠𝑑  if 𝑖 = 𝑑
0  otherwise 

∀𝑘 ∈

𝐾, 𝑠 ∈ 𝑆𝑁, 𝑑 ∈ 𝑃𝑁, 𝑖, 𝑗 ∈ 𝑁.            (17) 

The quadratic term's multiplication of the continuous 

variable by the binary variable was linearized using the 

following constraints (17) through (18), where non-negative 

linearization variable 𝜙𝑚,𝑢,𝑓
𝑎,𝑏,𝜆 = 𝛾𝑢,𝑓

𝑎,𝜆𝑆𝑚,𝑓
𝑏,𝜆

 is is introduced. 

𝜙𝑚,𝜆,𝑓
𝑎,𝑏𝜆 ≥ 0 

𝜙𝑚,𝜆,𝑓
𝑎,𝑏𝜆 ≤ 𝛽𝑆𝑚,𝑓

𝑏,𝜆  ∀𝑢,𝑚 ∈ 𝒰, ∀𝑎, 𝑏 ∈ 𝒜, ∀𝜆 ∈ 𝒲,∀𝑓 ∈

ℬ (𝑢 ≠ m, 𝑎 ≠ 𝑏)                 (18) 

where β is a large number, so that β >>γ . 

𝜙𝑚,𝑢,𝑓
𝑎,𝑏,𝜆 ≤ 𝛾𝑢,𝑓

𝑎,𝜆 ∀𝑢,𝑚 ∈ 𝒰, ∀𝑎, 𝑏 ∈ 𝒜, ∀𝜆 ∈ 𝒲,∀𝑓 ∈ ℬ (𝑢

≠ m, 𝑎 ≠ 𝑏) 

𝜙𝑚,𝑢,𝑓
𝑎,𝑏,𝜆 ≥ 𝛽𝑆𝑚,𝑓

𝑏,𝜆 + 𝛾𝑢,𝑓
𝑎,𝜆 − 𝛽 ∀𝑢,𝑚 ∈ 𝒰, ∀𝑎, 𝑏 ∈ 𝒜, ∀𝜆 ∈

𝒲,∀𝑓 ∈ ℬ (𝑢 ≠ m, 𝑎 ≠ 𝑏).                  (19) 

Equation (19) can be recast as Equation (20) by substituting 

this linearization variable for quadratic term. 

𝜙𝑚,𝑢,𝑓
𝑎,𝑏,𝜆 ≥ 𝛽𝑆𝑚,𝑓

𝑏,𝜆 + 𝛾𝑢,𝑓
𝑎,𝜆 − 𝛽 ∀𝑢,𝑚 ∈ 𝒰, ∀𝑎, 𝑏 ∈ 𝒜                      

(20) 
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Modulation format switching is not always an option for 

impaired demands, though, as there may not always be 

available spectrum on the route links to increase bandwidth. 

Be aware that the MFS may refuse a request if there are no 

more available spectrum resources or if all viable 

modulation switching options have been exhausted without 

satisfying the physical layer constraint. 

 

Meta-Heuristic Moth Flame Optimization With Chaotic 

Maps In Task Scheduling: 

A well-known SI algorithm called the moth-flame 

optimization (MFO) was motivated by the nighttime spiral 

migration of moths. This behaviour is derived from moths' 

ability to navigate by keeping a stable inclination to the 

moon, which allows them to travel vast distances in a 

straight path. If light source is reasonably close to moths, 

though, this sensible navigation system transforms into a 

lethal spiral path in that direction. The MFO algorithm is 

described as being made up of moths and flames in the 

quick summary. Moths are referred to as search agents in 

Equation (1), where N is total number of moths and M(t) is 

their organisational matrix that they use to search across the 

D-dimensional search space by eqn (21). 

𝑀(𝑡) = [

𝑚1,1 𝑚1,2 ⋯ 𝑚1,𝐷

𝑚2,1 𝑚2,2 ⋯ 𝑚2,𝐷

⋮ ⋮ ⋮ ⋮
𝑚𝑁,1 𝑚𝑁/2 ⋯ 𝑚𝑁,𝐷

]                                (21) 

Additionally, as seen below in the array OM (t), the fitness 

of the relevant moth is kept by eqn (22). 

 𝑂𝑀(𝑡) = [

𝑂𝑀1(𝑡)
𝑂𝑀2(𝑡)

⋮
𝑂𝑀𝑁(𝑡)

]                                                (22) 

However, the best spots found by moths are flames, which 

are kept in a matrix identical to F (t) together with their 

fitness values b indicates shape of logarithmic spiral, 

illustrates how moths spirally move around their 

corresponding flames by eqn (23). 

𝛼𝑋𝑘𝑛 ≥ 𝛿𝑘𝑛 ∀𝑘 ∈ 𝐾, 𝑛 ∈ 𝑃𝑁                            (23) 

Equation (5), where t finds current number of iterations, 

while N and Max define maximum number of iterations, 

shows that as the algorithm iterates, the number of flames 

reduces to allow for greater exploitation. It shows the 

maximum iterations and the total number of flames, 

respectively by eqn (24). 

𝐹𝑙𝑎𝑚𝑒𝑁𝑢𝑚(𝑡) = 𝑟𝑜𝑢𝑛𝑑(𝑁 − 𝑡 ×
𝑁−1

𝑀𝐴𝑥𝐼𝑇
)          (24) 

The MFO method is a three-tuple that is defined as follows 

and approximates global optimal of optimization issues by 

eqn (25): 

MFO = (𝐼, 𝑃, 𝑇)                                                 (25) 

The following is the function's methodical model by eqn 

(26): 

𝐼: ∅ → {𝑀, 𝑂𝑀}                                                 (26) 

The moths are moved throughout the search space by the P 

function, which is the primary function. This method was 

given the M matrix and eventually returns its modified one 

by eqn (27). 

𝑃:𝑀 → 𝑀                                                      (27) 

When the termination requirement is satisfied, the T 

function returns true; otherwise, it returns false by eqn (28). 

 𝑇:𝑀 → { true, false }                                    (28) 

By randomly shifting the position of Mi, the RM operator 

expands the scope of research. In addition, the GM operator 

is introduced to use enhanced moths stored in the guiding 

archive to direct the population toward promising zones. A 

dimensionally aware switch between these two operators is 

also advantageous for the migration strategy, as shown in 

eqn (7), where δ stands for current size of guiding archive 

by eqn (29). 

𝑀𝑖(𝑡 + 1) = {
 RM operator 𝛿 < 𝐷

 GM operator 𝛿 ≥ 𝐷
       (29) 

Let's say that there is a finite number of unlucky moths (M1, 

M2,..., Mi,...) such that OMi (t) > OMi (t 1). As a result, in 

this operator, Mi is parents in crossover defined by eqns (8) 

and (9), where is a random number in range [0, 1], and Mr is 

a randomly generated moth (Mr). The crossover creates two 

children, and the best offspring is chosen by comparing it to 

the other offspring and, if it can outperform the OMi, adding 

its position to the guiding archive (t). By stochastically 

relocating unlucky moths to find potential places in initial 

iterations, the RM operator satisfies the necessity for 

exploration by eqn (30). 

 Offspring 
1
= 𝛼 ×𝑀𝑖 + (1 − 𝛼) × 𝑀𝑟  

 Offspring 
2
= 𝛼 × 𝑀𝑟 + (1 − 𝛼) × 𝑀𝑖            (30) 

When size of GM equals size of issue variables, GM 

operator is used to modify position of the unlucky moth, Mi. 

By using crossover described in eqns (10) and (11), in which 

LMr is a chosen lucky moth from guiding archive, the GM 

modifies position of Mi. Similar to the RM operator, 

position of Mi (t + 1) is updated and added to guiding 

archive if new offspring achieves a better position than Mi 

(t) by eqn (31). 

 Offspring 
1
= 𝛼 ×𝑀𝑖 + (1 − 𝛼) × 𝑀𝑟  

 Offspring 
2
= 𝛼 × 𝑀𝑟 + (1 − 𝛼) × 𝑀𝑖         (32) 

Due to its characteristics of non-repetition, ergodicity, and 

dynamicity, chaos theory is one of the most effective 

methods for addressing the premature convergence problem. 

After a specific number of repetitive operations carried out 

by the same chaotic function, chaos is a stochastic methods 
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in non-linear deterministic method that ultimately renders 

numerical sequences of two closed beginning values useless. 

Operation of the proposed task scheduling is straightforward 

as well as easy to attain an optimal solution. For each 

iteration, we define r' and p using a chaotic map. Since other 

specifications values directly depend on values of r' and p, 

we can use chaotic sequence to speed up algorithm 

convergence while also preventing premature convergence. 

These maps behave differently when starting at a point of 

0.7. Based on range of chaotic map, it is also feasible to 

choose any integer as the starting point between [0, 1] and 

[1, 1]. However, the initial value has a substantial impact on 

the fluctuation pattern in some of these maps. Figure 3 

depicts the HMFO-CM flowchart. 

 

Flowchart for HMFO-CM: 

 
Figure 3. Overall flow chart 

 

The IoT applications are executed in large part thanks to the 

mobile computing paradigm, which is an extension of CC. 

The system designer anticipates deployment of fog nodes 

with specific computing and storage resources at edge of the 

network, between IoT as well as cloud layer, in this 

hierarchical paradigm (see Fig. 4). The mobile layer reduces 

the time it takes for data from IoT devices to and from cloud 

layer to be transmitted, allowing IoT applications to use 

nearby fog resources as infrastructure to offload and carry 

out their IoT duties in real-time. Additionally, new 

computational and storage limits apply to the completion of 

IoT tasks. Additionally, when offloading IoT tasks to fog or 

cloud resources, there are many QoS criteria that need to be 

considered. These factors are significant from both the 

standpoint of the system designer and the end-users of IoT 

applications. For example, real-time feature is crucial as a 

QoS specification that affects IoT applications' end users, or 

the energy consumption of fog nodes is a QoS parameter 

that matters to system designers. Goal is to provide a 

scheduler for dynamically arriving IoT jobs while taking 

into account a variety of goals for the QoS parameter 

optimization for both end users and system designers. 

 
Figure 4. 1 Hierarchical mobile-based architecture model 

 

4. Experimental results: 

We develop our Nash equilibrium method in Matlab and 

conduct experiments on a DELL T3400 workstation to 

illustrate viability of our strategy. Through a linear 

combination of actions on many components, such as CPU 

utilisation, Wi-Fi module status, LCD brightness, etc., we 

are able to derive the power model of mobile applications. 

We just use one factor, t, to represent overall activities of 

application because our goal is not a thorough power 

analysis for mobile devices. Assuming a mobile device's 

maximum power consumption is 2.4W and the application's 

actual power is 𝑃𝑎𝑝𝑝 = 𝛼 × 2.4𝑊  We presume that 

comprehensive application profiling has predetermined the 

amount of compute that will be offloaded. We presum that 

the servers are diverse and that their operational frequencies 

range from [2.0GHz to 3.0GHz]. We utilise the Intel Xeon 

processor-based server power model. This model states that 

server power is a linear function of CPU frequency at 

maximum utilisation. At 2.0GHz, it is 200W, and at 3.0GHz, 

it is 240W. The total system power, including static power, 
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is represented by these values. Based on information 

provided, consider that our server's static power is 100W 

when it is at rest. Server power and VM system utilisation 𝛽 

have a linear relationship. For simplicity, we set 𝛽 = 𝛼 in 

our trials. All things considered, we presumptively believe 

that server power is a linear function against both running 

frequency as well as usage. Server uses 100W to 140W more 

electricity while operating at full capacity than when it is 

idle. For delay method, consider that all servers, while 

operating at 2.0GHz, outperform mobile devices by a factor 

of. Its speedup ratio is 𝑠𝑀/2 while moving at speed s, or 

𝑔(𝑠𝑗) = 2/(𝑠𝑗𝑀). When N mobile devices offload to server, 

consider slowness factor is ℎ(𝑁) = 𝑁𝛾, 𝛾 ≥ 1, 𝛾 which 

takes into account the overhead of context switching. Device 

I will have to wait 10 × (𝑠𝑀/2) × N 𝛾 seconds to receive 

results if it offloads a computation that will take it 10 

seconds to complete to a server with a speed of s that is 

shared by N mobile devices 𝛾. During our test, 𝛾 is set at 

1.05. 

 

Evaluation metrics: 

• Resource Utilization: It speaks of the total amount 

of resources that a job uses to finish its execution. 

Resource Utilization (RU) is denoted by the 

following by eqn (33) 

𝑅𝑈 = 𝑅𝑎𝑣𝑙 − 𝑅𝑚𝑢                                             (33) 

 

where Rnu stands for unused resources and Ravl stands for 

available resources. Our particular work's processor and 

memory utilisation are examples of resource usage. When 

the other two procedures are merged, the percentage of a 

specific approach is always higher. A graphic representation 

of percentage usage of resources utilising different resource 

allocation systems is shown in Table 1 and Figure 5. It 

demonstrates that the proposed technique has the highest 

resource utilisation for a variety of task sizes. 

 

Table-1 Comparison of percentage utilization of resources 

Task Size MOHEFT LBP-ACS MCIoT_RA_5G 

20 65 69 71 

40 68 72 75 

60 71 74 79 

80 73 78 81 

100 75 81 83 

120 79 85 85 

140 81 88 89 

160 83 91 93 

180 89 92 94 

200 91 93 95 

 

 
Figure-5 Comparison of percentage utilization of resources 

 

• Response Time:  The amount of time that passes 

between a task being launched and being finished is 

referred to as the response time of a task. The 

following can be used to express the reaction time 

TSRes by eqn (34): 

𝑇𝑆Res = 𝑇𝑆𝐶𝑇 − 𝑇𝑆𝐴𝑇                                   (34) 

where TSAT is the task's arrival time and TSCT is the task's 

completion time. Our particular work's processor and 

memory utilisation are examples of resource usage. When 

the other two procedures are merged, the percentage of a 

specific approach is always higher. The maximum response 

time is shown in Figure 6 and Table-2. This is essentially the 

method that is suggested in our study to turn off passive 

prime ministers. It takes part in the system of resource use. 

 

Table-2 Comparison of response time 

Task Size MOHEFT LBP-ACS MCIoT_RA_5G 

20 55 61 65 

40 59 63 68 

60 61 65 72 

80 63 68 75 

100 68 71 79 

120 71 73 81 

140 75 75 83 

160 77 77 86 

180 81 83 88 

200 83 85 89 
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Figure 6. Comparison of response time 

 

• Power Consumption: It can be characterised as the 

energy unit that each cloud server uses to distribute 

resources. An energy management module is used 

by management to minimise energy consumption in 

this specific task. The power consumption solutions 

used in real-time data centres, such as dynamic 

voltage, frequency, and resource sleep, are 

numerous, however they are insufficient for the 

virtualized environment. When compared to current 

methods, our suggested methodology produces 

greater outcomes for energy reduction. Table 3 and 

Figure 7 provide as evidence for this. Energy 

management strategy described in this research 

minimises primary energy consumption PM, 

external energy consumption PM, and internal 

communication PM. 

 

Table-3 Comparison of Power consumption 

Task Size MOHEFT LBP-ACS MCIoT_RA_5G 

20 71 65 61 

40 68 63 59 

60 65 61 55 

80 62 58 51 

100 61 56 49 

120 58 54 45 

140 55 51 42 

160 52 48 41 

180 51 44 40 

200 48 42 38 

 

 
Figure 7: Comparison of power consumption 

 

• QoS: QoS is description or measurement of a 

service's total performance, particularly the 

performance experienced by network users, 

whether it be a cloud computing service, a 

telephony service, or a computer network. The 

table-4 and figure-8 shows QoS for proposed 

technique in resource allocation with task 

scheduling. 

 

Table-4 Comparison of QoS 

Task Size MOHEFT LBP-ACS MCIoT_RA_5G 

20 45 52 59 

40 46 55 62 

60 48 59 65 

80 51 61 67 

100 53 63 72 

120 55 66 75 

140 59 71 79 

160 61 73 81 

180 63 75 83 

200 65 78 85 

 

 
Figure 8. Comparison of QoS 
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Table-5 Comparison of communication cost 

Task Size MOHEFT LBP-ACS MCIoT_RA_5G 

20 71 65 61 

40 68 63 59 

60 65 61 55 

80 61 55 51 

100 58 53 49 

120 55 51 45 

140 53 45 44 

160 51 42 41 

180 49 41 38 

200 45 38 35 

 

 
Figure 9. Comparison of communication cost 

 

• Communication cost: The magnitude of the task's 

input determines the communication cost. Bytes are 

used to express this size. However, because we'll be 

utilising relational database operations as our 

examples, we'll frequently refer to size in terms of 

the number of tuples. A Markov chain is used to 

calculate the probability under the users, which 

represents the query rates for each user as shown in 

table 5 and figure 9. 

 

5. Conclusion 

For IoT applications that are time-sensitive, a paradigm that 

is governed by cloud, fog, and edge computing may give a 

solution. Additionally, fog nodes typically offer greater data 

processing and repository capacity, which can be exploited 

to boost performance and lower connection and latency 

costs. This research proposed novel framework in mobile 

cloud computing based resource allocation and task 

scheduling integrated with IoT module. Here the resource 

allocation has been carried out using virtual machine based 

markov model infused wavelength division multiplexing. 

Task scheduling is carried out using meta-heuristic moath 

flame optimization with chaotic maps. The experimental 

results has been carried out in terms of resource ulitization 

of 95%, response time of 89%, computational cost of 35%, 

power consumption of 38%, QoS of 85%. By minimising 

the amount of time that user jobs need to be processed, 

service providers can increase their income through the 

efficient use of task scheduling and resource allocation of 

cloud infrastructure. Usefulness of the suggested model in a 

real-world scenario will be determined in future using a 

significant amount of actual data in a real cloud 

environment. 
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