

International Journal on Future Revolution in Computer Science & Communication Engineering (IJFRCSCE)

ISSN: 2454-4248 Volume: 8 Issue: 3

DOI: https://doi.org/10.17762/ijfrcsce.v8i3.2094

Article Received: 10 June 2022 Revised: 20 August 2022 Accepted: 25 August 2022 Publication: 15 September 2022

__

33
IJFRCSCE | September 2022, Available @ http://www.ijfrcsce.org

Mobile Cloud IoT for Resource Allocation with

Scheduling in Device- Device Communication and

Optimization based on 5G Networks

Dr. Prakash Pise
Sinhgad Institute of Management,

SPPU PUNE UNIVERSITY

India

prakash.pise532@gmail.com

Abstract:

Internet of Things (IoT) is revolutionising technical environment of traditional methods as well as has applications in smart cities, smart

industries, etc. Additionally, IoT enabled models' application areas are resource-constrained as well as demand quick answers, low latencies,

and high bandwidth, all of which are outside of their capabilities. The above-mentioned issues are addressed by cloud computing (CC), which

is viewed as a resource-rich solution. However, excessive latency of CC prevents it from being practical. The performance of IoT-based smart

systems suffers from longer delay. CC is an affordable, emergent dispersed computing pattern that features extensive assembly of diverse

autonomous methods. This research propose novel technique resource allocation and task scheduling for device-device communication in

mobile Cloud IoT environment based on 5G networks. Here the resource allocation has been carried out using virtual machine based markov

model infused wavelength division multiplexing. Task scheduling is carried out using meta-heuristic moath flame optimization with chaotic

maps. So, by scheduling tasks in a smaller search space, system resources are conserved. We run simulation tests on benchmark issues and

real-world situations to confirm the effectiveness of our suggested approach. The parameters measured here are resource utilization of 95%,

response time of 89%, computational cost of 35%, power consumption of 38%, QoS of 85%.

Keywords: Internet of Things, mobile Cloud IoT, 5G networks, device-device communication, resource allocation, Task scheduling

1. Introduction:

Ground breaking season of PC labourer farms gave rise to

the spectacular innovation of CC, which aids in putting an

end to virtualization trends [1]. An "association" that

connects programming, foundation as an aid, and platform

as a service is how appropriate handling is described (PaaS).

Everyone has a unique general thesis about business.

Purpose of appropriated figuring is to design an application

on a virtual asset of PCs that is used to serve clients

regardless of the purchased model [2]. Additionally, as the

cloud is based on the pillars of two fundamental

foundations, such as CC and networking, Internet

connectivity and infrastructure are crucial. The network can

be utilised for CC and other applications in numerous cloud

apps [3]. The cloud's infrastructure and capabilities are

integrated with the QoS distribution network. As a result,

more application service providers (ASPs) are aware of the

difference between the operation and actual usage of

necessary infrastructure as well as have made use of

infrastructure that was leased from infrastructure providers.

For instance, Force Square created the first cloud resource

measurement resource by using Amazon EC2 Analytics for

more than 5 million days while saving 53% of its value to

fulfil measurable needs [4]. Each edge-node in a cyber-

physical ecosystem is envisioned as an IoT device that may

dynamically collaborate with other network nodes to carry

out one or more user-assigned activities. Although these

infrastructures as well as computer resources are given by

CSP, IoT networks typically have restricted access to

resources like processing power, storage, network

bandwidth, and RAM. IoT devices' sensors generate an

enormous amount of real-time data. Resource scheduling is

the CC domain's greatest obstacle (RS). Using the proper

hardware techniques and infrastructure, RS must be

performed while maintaining at least satisfying levels of

QoS [5]. According to a recent survey, the broker is often

responsible for matching up requested end user tasks with

the available virtualized hardware, which is typically done

using a virtual machine (VM). The scheduling procedure is

carried out by the broker during mapping. The process of

assigning tasks to the appropriate VMs for implementation

has grown increasingly difficult with the development of

International Journal on Future Revolution in Computer Science & Communication Engineering (IJFRCSCE)

ISSN: 2454-4248 Volume: 8 Issue: 3

DOI: https://doi.org/10.17762/ijfrcsce.v8i3.2094

Article Received: 10 June 2022 Revised: 20 August 2022 Accepted: 25 August 2022 Publication: 15 September 2022

__

34
IJFRCSCE | September 2022, Available @ http://www.ijfrcsce.org

several resources that are now available. Few VMs may be

under- or over-utilized when an ineffective scheduling

procedure is used, and the implication of this situation

results in a decline in the cloud system's overall

performance. The RS issues that fall under the category of

NP-hard optimization issues. It should be noted that the

words cloudlet as well as task scheduling are also

appropriated in contemporary computer science literature for

process of matching submitted end-user tasks to available

VMs [6].

The research contribution is as follows:

• To propose novel technique resource allocation and

task scheduling for device-device communication

in mobile Cloud IoT environment based on 5G

networks

• The resource allocation has been carried out using

virtual machine based markov model infused

wavelength division multiplexing

• Task scheduling is carried out using meta-heuristic

moath flame optimization with chaotic maps

2. Background study:

Over past few years, there is significant improvement in

academic interest in SLA-based resource allocation [7] in

cloud data centres. In work [8], a dynamic scheduling

approach for context-aware, SOA-based applications'

response time SLA was developed. In order to minimise

taxing the service tier resources in accordance with a SLA

measure, the authors of [9] suggested rate-limiting requests.

The inventors of [10] employed a dynamic scheduling

technique that is capable of providing SLAs for CPU service

share in server clusters. Previous studies focused on IoT

cloud allocation methodologies took into account execution

speed and security groupings. A combinatorial auction

system, for instance, was suggested by the author in [11] as

a way to effectively allocate resources and decrease the

penalty when there were execution time restrictions. A

framework for fulfilling application needs for security in a

cloud for processing IoT data was proposed in study [12].

Over past few years, there is significant improve in

academic interest in SLA-based resource allocation in cloud

data centres. In work [13], a dynamic scheduling technique

for context-aware, SOA-based applications' response time

SLA was developed. In order to prevent overtaxing the

service tier resources as measured by a SLA metric, the

developers of [14] have suggested rate-limiting requests. In

their study [15], the authors devised a dynamic scheduling

technique that can ensure SLAs for CPU service share in

server clusters. Previous studies focused on IoT cloud

allocation methodologies took into account execution speed

and security groupings. For instance, work [16] suggested

using a combinatorial auction system to effectively allocate

resources and lower the penalty when there were execution

time limits. In order to fulfil application requirements for

security in a cloud for processing IoT data, author [17]

presented a framework. In order of earliest finish time, tasks

are sorted and opportunistically added to open processor idle

time slots. In terms of robustness and performance, HEFT is

rated as the top scheduling heuristic method out of twenty

[18]. [19] presents a mixed-integer linear programming

model to simulate offloading dependent jobs with time

limitations in an IoT-fog system. IoT devices are

disregarded in this work, which treats the cloud computing

layer as if it were a CPU with infinite processing power. The

top K new solutions are selected as the Pareto set after the

new solutions are sorted by crowding distance. In [20],

fuzzy dominance is used to enhance MOHEFT's

performance, which maximises both makespan and cost

index. Constrained optimization challenges in cloud fog

platforms were related task scheduling problems that the

author [21] formulated. It is suggested to handle these issues

using an LBP-ACS strategy.

3. Proposed Mobile Cloud IoT for resource

allocation with scheduling:

This section discuss novel technique resource allocation and

task scheduling for device-device communication in mobile

Cloud IoT environment based on 5G networks. Here the

resource allocation has been carried out using virtual

machine based fuzzy rules infused wavelength division

multiplexing. Task scheduling is carried out using meta-

heuristic moath flame optimization with chaotic maps. The

system architecture is shown in figure-1.

Figure-1 Proposed Mobile cloud IoT environment

International Journal on Future Revolution in Computer Science & Communication Engineering (IJFRCSCE)

ISSN: 2454-4248 Volume: 8 Issue: 3

DOI: https://doi.org/10.17762/ijfrcsce.v8i3.2094

Article Received: 10 June 2022 Revised: 20 August 2022 Accepted: 25 August 2022 Publication: 15 September 2022

__

35
IJFRCSCE | September 2022, Available @ http://www.ijfrcsce.org

Network Model:

It is assumed that all resource nodes in a cloud computing

system must communicate with one another. Therefore, the

overall cost of network connections should be determined

for each solution to the RA problem. It is presumed that

every resource communicated with every other resource.

These messages' overall costs are assessed and taken into

consideration as an objective function. the Tc symbol stands

for the function called total cost. The suggested algorithm

makes an effort to reduce this function. Tc is calculated

using equation (1).

𝑇𝑐 =
∑𝑗=1
|𝑉𝑠|  (𝑑𝑗

𝑟×𝑑𝛿)

𝑝
 (1)

As a result, we specify three service events in the system

model: 1) A user identified by the letter el submits a request

to the cloud for security service number l; 2) A user,

represented by the symbol eh, submits a request to the cloud

for security service eh; and 3) When a security service

transaction is complete, linked VIs are released, as indicated

by the symbol ef. Nl and Nh, respectively, represent number

of security services l and h that are now being provided in

the cloud. Therefore, system state is given as: 𝑆 = {𝑠 ∣ 𝑠 =

⟨𝑠̂, 𝑒⟩}

where 𝑠̂ = ⟨𝑁𝑙 , 𝑁ℎ⟩, 𝑒 ∈ {𝑒𝑙 , 𝑒ℎ, 𝑒𝑓}, and 0 ≤ 𝛼𝑙𝑁𝑙 + 𝛼ℎ𝑁ℎ ≤

𝑥(𝑠, 𝑎) − 𝜏(𝑠, 𝑎)𝑦(𝑠, 𝑎), 𝐾.

Based on service revenues and operating costs, the system's

net return can be assessed by eqn (2):

𝑥(𝑠, 𝑎) − 𝜏(𝑠, 𝑎)y(s, a) (2)

Where x(s, a) represents cloud's net lump sum earnings

when decision an is made at current state s, y(s, a) represents

service holding cost rate when decision an is made and the

cloud is in state s, and τ (s, a) represents anticipated service

time from current state s to next state. It is calculated by eqn

(3)

𝑥(𝑠, 𝑎) = {

0, 𝑎⟨𝑠̂,𝑒) = 0,

𝑅𝑙, 𝑎⟨𝑠̂,𝑒𝑙⟩ = 1,

𝑅ℎ, 𝑎⟨𝑠̂,𝑒ℎ⟩ = 1,
 (3)

where Rl and Rh are cloud's earnings when requests for l

and h security services are approved, respectively. The

occupied cloud resources are proportional to service holding

cost rate y(s, a), which is given by eqn (4)

 𝑦(𝑠, 𝑎) = {

𝛼𝑙𝑁𝑙 + 𝛼ℎ𝑁ℎ, 𝑎⟨𝑠̂,𝑒⟩ = 0,

𝛼𝑙(𝑁𝑙 + 1) + 𝛼ℎ𝑁ℎ, 𝑎⟨𝑠̂,𝑒𝑙⟩ = 1

𝛼𝑙𝑁𝑙 + 𝛼ℎ(𝑁ℎ + 1), 𝑎⟨𝑠̂,𝑒ℎ⟩ = 1

 (4)

A decision epoch is point in time when any of occurrences,

such as the arrival of a service request l or h or completion

of a security service and release of VIs' allotted resources,

occurs. An exponential distribution describes the amount of

time that passes between two decision points. Given present

state s and the action a, denote τ (s, a) as anticipated time

interval between 2 decision epochs by eqn (5).

𝜏(𝑠, 𝑎) =

{

 [𝛾 + 𝑎⟨𝑠̂,𝑒𝑙⟩𝜇𝑙]
−1
, 𝑒 = 𝑒𝑙

[𝛾 + 𝑎⟨𝑠̂,𝑒ℎ⟩𝜇ℎ]
−1
, 𝑒 = 𝑒ℎ

𝛾−1, 𝑒 = 𝑒𝑓

 (5)

Virtual Machine Based Markov Model Infused

Wavelength Division Multiplexing In Resource

Allocation:

Virtual machine allocation is defined as the assignment of a

collection of VMs to a collection of physically located

machines in a data centre. The term "virtualization" refers to

the ability to execute several operating system instances on a

single physical machine, maximising use of the hardware.

Multiple users can share the computer resource pool in

accordance with the actual demand thanks to the usage of

virtualization technology. Therefore, the VM allocation

system requires to be adjusted to meet needs for resource

utilisation while minimising user costs. Figure 2 displays

how VM resources are allocated in CC.

Figure-2 VM resource allocation

For a state 𝑠 = ⟨𝑠̂, 𝑒⟩where 𝑠̂ = ⟨𝑁𝑙 , 𝑁ℎ⟩, 𝑒 ∈ {𝑒𝑙 , 𝑒ℎ, 𝑒𝑓}, and

action 𝑎 = 0 the next state

𝑗1 = ⟨𝑁𝑙 , 𝑁ℎ, 𝑒𝑙⟩, 𝑗2 = ⟨𝑁𝑙 , 𝑁ℎ, 𝑒ℎ⟩, 𝑗3 = ⟨𝑁𝑙 −1,𝑁ℎ , 𝑒𝑓⟩(𝑁1 ≥

1), and 𝑗4 = ⟨𝑁𝑙 , 𝑁ℎ − 1, 𝑒𝑓⟩(𝑁ℎ ≥ 1). q(j|s, a) are given as

by eqn (6)

𝑞(𝑗 ∣ 𝑠, 𝑎) = {

𝜆𝑙𝜏(𝑠, 𝑎), 𝑗 = 𝑗1
𝜆ℎ𝜏(𝑠, 𝑎), 𝑗 = 𝑗2
𝑁𝑙𝜇𝑙𝜏(𝑠, 𝑎), 𝑗 = 𝑗3
𝑁ℎ𝜇ℎ𝜏(𝑠, 𝑎), 𝑗 = 𝑗4

 (6)

Note that 0 ≤ 𝛼𝑙𝑁𝑙 + 𝛼ℎ𝑁ℎ ≤ 𝐾 For the current state 𝑠 =

⟨𝑠̂, 𝑒𝑙⟩ and the action a = 1, the next state can be 𝑗5 =

⟨𝑁𝑙 + 1,𝑁ℎ , 𝑒𝑙⟩, 𝑗6 = ⟨𝑁𝑙 + 1,𝑁ℎ, 𝑒ℎ̅̅ ̅⟩

, 𝑗7 = ⟨𝑁𝑙 , 𝑁ℎ, 𝑒𝑓⟩, and 𝑗8 = ⟨𝑁𝑙 + 1,𝑁ℎ − 1, 𝑒𝑓⟩(𝑁ℎ ≥ 1) by

eqn. (7)

Thus, q(j|s, a) is given as:

International Journal on Future Revolution in Computer Science & Communication Engineering (IJFRCSCE)

ISSN: 2454-4248 Volume: 8 Issue: 3

DOI: https://doi.org/10.17762/ijfrcsce.v8i3.2094

Article Received: 10 June 2022 Revised: 20 August 2022 Accepted: 25 August 2022 Publication: 15 September 2022

__

36
IJFRCSCE | September 2022, Available @ http://www.ijfrcsce.org

𝑞(𝑗 ∣ 𝑠, 𝑎) = {

𝜆𝑙𝜏(𝑠, 𝑎), 𝑗 = 𝑗5
𝜆ℎ𝜏(𝑠, 𝑎), 𝑗 = 𝑗6
(𝑁𝑙 + 1)𝜇𝑙𝜏(𝑠, 𝑎), 𝑗 = 𝑗7
𝑁ℎ𝜇ℎ𝜏(𝑠, 𝑎), 𝑗 = 𝑗8

 (7)

Similarly, for state 𝑠 = ⟨𝑠̂, 𝑒ℎ⟩ and action a = 1, the next

state is 𝑗9 = ⟨𝑁𝑙 , 𝑁ℎ
′ + 1, 𝑒𝑙⟩, 𝑗10 = ⟨𝑁𝑙 , 𝑁ℎ + 1, 𝑒ℎ⟩, 𝑗11 =

⟨𝑁𝑙 − 1,𝑁ℎ + 1, 𝑒𝑓⟩(𝑁𝑙 ≥ 1), and 𝑗12 = ⟨𝑁𝑙 , 𝑁ℎ, 𝑒𝑓⟩ Thus,

q(j|s, a) is given as eqn (8)

𝑞(𝑗 ∣ 𝑠, 𝑎) = {

𝜆𝑙𝜏(𝑠, 𝑎), 𝑗 = 𝑗9
𝜆ℎ𝜏(𝑠, 𝑎), 𝑗 = 𝑗10
𝑁𝑙𝜇𝑙𝜏(𝑠, 𝑎), 𝑗 = 𝑗11
(𝑁ℎ + 1)𝜇ℎ𝜏(𝑠, 𝑎), 𝑗 = 𝑗12

 (8)

The expected discounted reward during τ (s, a) satisfies the

following conditions when the discounted reward model is

applied by eqn (9):

𝑧(𝑠, 𝑎) = 𝑥(𝑠, 𝑎) − 𝑦(𝑠, 𝑎)𝐸𝑎
𝑠
{∫

0

𝜏1
 𝑒−𝛼𝑡𝑑𝑡}

= 𝑥(𝑠, 𝑎) − 𝑦(𝑠, 𝑎)𝐸𝑎
𝑠
{
[1 − 𝑒−𝛼𝜏1]

𝛼
}

= 𝑥(𝑠, 𝑎) −
𝑦(𝑠, 𝑎)𝜏(𝑠, 𝑎)

1 + 𝛼𝜏(𝑠, 𝑎)

𝜈(𝑠) = max𝑎∈𝐴  {𝑧(𝑠, 𝑎) + 𝜆∑𝑗∈𝑆  𝑞(𝑗 ∣ 𝑠, 𝑎)𝜈(𝑗)} (9)

where λ = (1 + ατ (s, a))−1. Let w be a finite constant, w =

λl+λh+K ∗max(μl, μh) < ∞, and λ˜ = w/(w+α). Following

uniformization, v(s) optimality equation can be found.,

𝜈̃(𝑠) = max𝑎∈𝐴‾  {𝑧̃(𝑠, 𝑎) + 𝜆‾∑𝑗∈𝑆  𝑞‾(𝑗 ∣ 𝑠, 𝑎)𝜈̃(𝑗)}

where 𝑧̃(𝑠, 𝑎) ≡ 𝑧(𝑠, 𝑎)
1+𝑎𝜏(𝑠,𝑎)

(𝛼+𝑤)𝑟(𝑠,𝑎)
, and

𝑞̃(𝑗 ∣ 𝑠, 𝑎) = {
1 −

|1−𝑞(𝑠∣𝑠,𝑎)|

𝜏(𝑠,𝑎)𝑤
, 𝑗 = 𝑠

𝑞(𝑗∣𝑠,𝑎)

𝜏(𝑠,𝑎)𝑤
, 𝑗 ≠ 𝑠,

 (10)

The goal of the model is to reduce the total suggested

architecture's power consumption, which includes

processing as well as networking power consumption of

processing locations and network connecting these

locations, as shown in equation below eqn (11).

∑𝑛∈𝑃𝑁  𝑃𝑛 + ∑𝑛∈𝑃𝑁  𝒫𝑛 (11)

The power used by processors for processing and the power

used to transmit traffic across the network make up the two

terms in the objective equation. Be aware that each

processing node choice and the OW mobile units are

connected by a separate route in our network topology.

According to equation, the power consumption of this route

is indicated by a single value by eqn (12). In order to add

across processing nodes, the second term in equation (11) is

used. Pn is the symbol for the processor power usage.

𝑃𝑛 = ∑𝑘∈𝐾  𝑋𝑘𝑛𝐸𝑛 ∀𝑛 ∈ 𝑃𝑁 (12)

where Xkn represents the workload needed to complete job

k, measured in MIPS and assigned to processing node n. En

is node processor's energy in watts per MIPS, calculated

using node's maximal processing power. Given as the

networking power usage, Pn by eqn (13)

𝒫𝑛 = ∑𝑘∈𝐾  𝛿𝑘𝑛𝐹𝑘𝑠Ψ𝑛 ∀𝑛 ∈ 𝑃𝑁, 𝑠 ∈ 𝑆𝑁 (13)

where Fks is task data rate demand (in Mbps) produced by

source node s, and δkn is a binary variable that determines

assignment of task k to processing node Ψn. Between source

as well as designated processing node, n is the sum of all

nodes' power per Mbps. The power per Mbps number for

OW link is determined using specific wavelength colour

(RYGB) that is being used for the connection.

The following restrictions are placed on the model:

Constrained processing allocation by eqn (14)

𝛼𝑋𝑘𝑛 ≥ 𝛿𝑘𝑛 ∀𝑘 ∈ 𝐾, 𝑛 ∈ 𝑃𝑁

𝑋𝑘𝑛𝑛 ≤ 𝛼𝛿𝑘𝑛 ∀𝑘 ∈ 𝐾, 𝑛 ∈ 𝑃𝑁

∑𝑛∈𝑃𝑁  𝛿𝑘𝑛 = 1 ∀𝑘 ∈ 𝐾 (14)

assures that one processing node will be given to each of the

task k tasks. Constrained processing node capacity by eqn

(15)

∑𝑘∈𝐾  𝑋𝑘𝑡 ≤ 𝐶𝑛𝑡 ∀𝑛 ∈ 𝑃𝑁 (15)

Every task k given to a processing node n does not go above

that node's processing limit. Link capacity limitation by eqn

(16)

∑𝑘∈𝐾  ∑𝑆∈𝑆𝑁  𝜆𝑖𝑗
𝑘∈𝑑 ≤ 𝐿𝑖𝑗 ∀𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁𝑚𝑖 , 𝑖 ≠ 𝑗.

𝑑 ∈ 𝑃𝑁 (16)

The amount of task k traffic travelling from source s to

processing node d does not go beyond limit of any link

connecting nodes I and j. Constraint on flow conservation by

eqn (17)

∑𝑗∈𝑁𝑚𝑖
𝑖≠𝑗

 𝜆𝑖𝑗
𝑘𝑠𝑑 − ∑𝑗∈𝑁𝑚𝑖

𝑖≠𝑗

 𝜆𝑗𝑖
𝑘𝑠𝑑 = {

𝐿𝑘𝑠𝑑 if 𝑖 = 𝑠
−𝐿𝑘𝑠𝑑 if 𝑖 = 𝑑
0 otherwise

∀𝑘 ∈

𝐾, 𝑠 ∈ 𝑆𝑁, 𝑑 ∈ 𝑃𝑁, 𝑖, 𝑗 ∈ 𝑁. (17)

The quadratic term's multiplication of the continuous

variable by the binary variable was linearized using the

following constraints (17) through (18), where non-negative

linearization variable 𝜙𝑚,𝑢,𝑓
𝑎,𝑏,𝜆 = 𝛾𝑢,𝑓

𝑎,𝜆𝑆𝑚,𝑓
𝑏,𝜆

 is is introduced.

𝜙𝑚,𝜆,𝑓
𝑎,𝑏𝜆 ≥ 0

𝜙𝑚,𝜆,𝑓
𝑎,𝑏𝜆 ≤ 𝛽𝑆𝑚,𝑓

𝑏,𝜆 ∀𝑢,𝑚 ∈ 𝒰, ∀𝑎, 𝑏 ∈ 𝒜, ∀𝜆 ∈ 𝒲,∀𝑓 ∈

ℬ (𝑢 ≠ m, 𝑎 ≠ 𝑏) (18)

where β is a large number, so that β >>γ .

𝜙𝑚,𝑢,𝑓
𝑎,𝑏,𝜆 ≤ 𝛾𝑢,𝑓

𝑎,𝜆 ∀𝑢,𝑚 ∈ 𝒰, ∀𝑎, 𝑏 ∈ 𝒜, ∀𝜆 ∈ 𝒲,∀𝑓 ∈ ℬ (𝑢

≠ m, 𝑎 ≠ 𝑏)

𝜙𝑚,𝑢,𝑓
𝑎,𝑏,𝜆 ≥ 𝛽𝑆𝑚,𝑓

𝑏,𝜆 + 𝛾𝑢,𝑓
𝑎,𝜆 − 𝛽 ∀𝑢,𝑚 ∈ 𝒰, ∀𝑎, 𝑏 ∈ 𝒜, ∀𝜆 ∈

𝒲,∀𝑓 ∈ ℬ (𝑢 ≠ m, 𝑎 ≠ 𝑏). (19)

Equation (19) can be recast as Equation (20) by substituting

this linearization variable for quadratic term.

𝜙𝑚,𝑢,𝑓
𝑎,𝑏,𝜆 ≥ 𝛽𝑆𝑚,𝑓

𝑏,𝜆 + 𝛾𝑢,𝑓
𝑎,𝜆 − 𝛽 ∀𝑢,𝑚 ∈ 𝒰, ∀𝑎, 𝑏 ∈ 𝒜

(20)

International Journal on Future Revolution in Computer Science & Communication Engineering (IJFRCSCE)

ISSN: 2454-4248 Volume: 8 Issue: 3

DOI: https://doi.org/10.17762/ijfrcsce.v8i3.2094

Article Received: 10 June 2022 Revised: 20 August 2022 Accepted: 25 August 2022 Publication: 15 September 2022

__

37
IJFRCSCE | September 2022, Available @ http://www.ijfrcsce.org

Modulation format switching is not always an option for

impaired demands, though, as there may not always be

available spectrum on the route links to increase bandwidth.

Be aware that the MFS may refuse a request if there are no

more available spectrum resources or if all viable

modulation switching options have been exhausted without

satisfying the physical layer constraint.

Meta-Heuristic Moth Flame Optimization With Chaotic

Maps In Task Scheduling:

A well-known SI algorithm called the moth-flame

optimization (MFO) was motivated by the nighttime spiral

migration of moths. This behaviour is derived from moths'

ability to navigate by keeping a stable inclination to the

moon, which allows them to travel vast distances in a

straight path. If light source is reasonably close to moths,

though, this sensible navigation system transforms into a

lethal spiral path in that direction. The MFO algorithm is

described as being made up of moths and flames in the

quick summary. Moths are referred to as search agents in

Equation (1), where N is total number of moths and M(t) is

their organisational matrix that they use to search across the

D-dimensional search space by eqn (21).

𝑀(𝑡) = [

𝑚1,1 𝑚1,2 ⋯ 𝑚1,𝐷

𝑚2,1 𝑚2,2 ⋯ 𝑚2,𝐷

⋮ ⋮ ⋮ ⋮
𝑚𝑁,1 𝑚𝑁/2 ⋯ 𝑚𝑁,𝐷

] (21)

Additionally, as seen below in the array OM (t), the fitness

of the relevant moth is kept by eqn (22).

 𝑂𝑀(𝑡) = [

𝑂𝑀1(𝑡)
𝑂𝑀2(𝑡)

⋮
𝑂𝑀𝑁(𝑡)

] (22)

However, the best spots found by moths are flames, which

are kept in a matrix identical to F (t) together with their

fitness values b indicates shape of logarithmic spiral,

illustrates how moths spirally move around their

corresponding flames by eqn (23).

𝛼𝑋𝑘𝑛 ≥ 𝛿𝑘𝑛 ∀𝑘 ∈ 𝐾, 𝑛 ∈ 𝑃𝑁 (23)

Equation (5), where t finds current number of iterations,

while N and Max define maximum number of iterations,

shows that as the algorithm iterates, the number of flames

reduces to allow for greater exploitation. It shows the

maximum iterations and the total number of flames,

respectively by eqn (24).

𝐹𝑙𝑎𝑚𝑒𝑁𝑢𝑚(𝑡) = 𝑟𝑜𝑢𝑛𝑑(𝑁 − 𝑡 ×
𝑁−1

𝑀𝐴𝑥𝐼𝑇
) (24)

The MFO method is a three-tuple that is defined as follows

and approximates global optimal of optimization issues by

eqn (25):

MFO = (𝐼, 𝑃, 𝑇) (25)

The following is the function's methodical model by eqn

(26):

𝐼: ∅ → {𝑀, 𝑂𝑀} (26)

The moths are moved throughout the search space by the P

function, which is the primary function. This method was

given the M matrix and eventually returns its modified one

by eqn (27).

𝑃:𝑀 → 𝑀 (27)

When the termination requirement is satisfied, the T

function returns true; otherwise, it returns false by eqn (28).

 𝑇:𝑀 → { true, false } (28)

By randomly shifting the position of Mi, the RM operator

expands the scope of research. In addition, the GM operator

is introduced to use enhanced moths stored in the guiding

archive to direct the population toward promising zones. A

dimensionally aware switch between these two operators is

also advantageous for the migration strategy, as shown in

eqn (7), where δ stands for current size of guiding archive

by eqn (29).

𝑀𝑖(𝑡 + 1) = {
 RM operator 𝛿 < 𝐷

 GM operator 𝛿 ≥ 𝐷
 (29)

Let's say that there is a finite number of unlucky moths (M1,

M2,..., Mi,...) such that OMi (t) > OMi (t 1). As a result, in

this operator, Mi is parents in crossover defined by eqns (8)

and (9), where is a random number in range [0, 1], and Mr is

a randomly generated moth (Mr). The crossover creates two

children, and the best offspring is chosen by comparing it to

the other offspring and, if it can outperform the OMi, adding

its position to the guiding archive (t). By stochastically

relocating unlucky moths to find potential places in initial

iterations, the RM operator satisfies the necessity for

exploration by eqn (30).

 Offspring
1
= 𝛼 ×𝑀𝑖 + (1 − 𝛼) × 𝑀𝑟

 Offspring
2
= 𝛼 × 𝑀𝑟 + (1 − 𝛼) × 𝑀𝑖 (30)

When size of GM equals size of issue variables, GM

operator is used to modify position of the unlucky moth, Mi.

By using crossover described in eqns (10) and (11), in which

LMr is a chosen lucky moth from guiding archive, the GM

modifies position of Mi. Similar to the RM operator,

position of Mi (t + 1) is updated and added to guiding

archive if new offspring achieves a better position than Mi

(t) by eqn (31).

 Offspring
1
= 𝛼 ×𝑀𝑖 + (1 − 𝛼) × 𝑀𝑟

 Offspring
2
= 𝛼 × 𝑀𝑟 + (1 − 𝛼) × 𝑀𝑖 (32)

Due to its characteristics of non-repetition, ergodicity, and

dynamicity, chaos theory is one of the most effective

methods for addressing the premature convergence problem.

After a specific number of repetitive operations carried out

by the same chaotic function, chaos is a stochastic methods

International Journal on Future Revolution in Computer Science & Communication Engineering (IJFRCSCE)

ISSN: 2454-4248 Volume: 8 Issue: 3

DOI: https://doi.org/10.17762/ijfrcsce.v8i3.2094

Article Received: 10 June 2022 Revised: 20 August 2022 Accepted: 25 August 2022 Publication: 15 September 2022

__

38
IJFRCSCE | September 2022, Available @ http://www.ijfrcsce.org

in non-linear deterministic method that ultimately renders

numerical sequences of two closed beginning values useless.

Operation of the proposed task scheduling is straightforward

as well as easy to attain an optimal solution. For each

iteration, we define r' and p using a chaotic map. Since other

specifications values directly depend on values of r' and p,

we can use chaotic sequence to speed up algorithm

convergence while also preventing premature convergence.

These maps behave differently when starting at a point of

0.7. Based on range of chaotic map, it is also feasible to

choose any integer as the starting point between [0, 1] and

[1, 1]. However, the initial value has a substantial impact on

the fluctuation pattern in some of these maps. Figure 3

depicts the HMFO-CM flowchart.

Flowchart for HMFO-CM:

Figure 3. Overall flow chart

The IoT applications are executed in large part thanks to the

mobile computing paradigm, which is an extension of CC.

The system designer anticipates deployment of fog nodes

with specific computing and storage resources at edge of the

network, between IoT as well as cloud layer, in this

hierarchical paradigm (see Fig. 4). The mobile layer reduces

the time it takes for data from IoT devices to and from cloud

layer to be transmitted, allowing IoT applications to use

nearby fog resources as infrastructure to offload and carry

out their IoT duties in real-time. Additionally, new

computational and storage limits apply to the completion of

IoT tasks. Additionally, when offloading IoT tasks to fog or

cloud resources, there are many QoS criteria that need to be

considered. These factors are significant from both the

standpoint of the system designer and the end-users of IoT

applications. For example, real-time feature is crucial as a

QoS specification that affects IoT applications' end users, or

the energy consumption of fog nodes is a QoS parameter

that matters to system designers. Goal is to provide a

scheduler for dynamically arriving IoT jobs while taking

into account a variety of goals for the QoS parameter

optimization for both end users and system designers.

Figure 4. 1 Hierarchical mobile-based architecture model

4. Experimental results:

We develop our Nash equilibrium method in Matlab and

conduct experiments on a DELL T3400 workstation to

illustrate viability of our strategy. Through a linear

combination of actions on many components, such as CPU

utilisation, Wi-Fi module status, LCD brightness, etc., we

are able to derive the power model of mobile applications.

We just use one factor, t, to represent overall activities of

application because our goal is not a thorough power

analysis for mobile devices. Assuming a mobile device's

maximum power consumption is 2.4W and the application's

actual power is 𝑃𝑎𝑝𝑝 = 𝛼 × 2.4𝑊 We presume that

comprehensive application profiling has predetermined the

amount of compute that will be offloaded. We presum that

the servers are diverse and that their operational frequencies

range from [2.0GHz to 3.0GHz]. We utilise the Intel Xeon

processor-based server power model. This model states that

server power is a linear function of CPU frequency at

maximum utilisation. At 2.0GHz, it is 200W, and at 3.0GHz,

it is 240W. The total system power, including static power,

International Journal on Future Revolution in Computer Science & Communication Engineering (IJFRCSCE)

ISSN: 2454-4248 Volume: 8 Issue: 3

DOI: https://doi.org/10.17762/ijfrcsce.v8i3.2094

Article Received: 10 June 2022 Revised: 20 August 2022 Accepted: 25 August 2022 Publication: 15 September 2022

__

39
IJFRCSCE | September 2022, Available @ http://www.ijfrcsce.org

is represented by these values. Based on information

provided, consider that our server's static power is 100W

when it is at rest. Server power and VM system utilisation 𝛽

have a linear relationship. For simplicity, we set 𝛽 = 𝛼 in

our trials. All things considered, we presumptively believe

that server power is a linear function against both running

frequency as well as usage. Server uses 100W to 140W more

electricity while operating at full capacity than when it is

idle. For delay method, consider that all servers, while

operating at 2.0GHz, outperform mobile devices by a factor

of. Its speedup ratio is 𝑠𝑀/2 while moving at speed s, or

𝑔(𝑠𝑗) = 2/(𝑠𝑗𝑀). When N mobile devices offload to server,

consider slowness factor is ℎ(𝑁) = 𝑁𝛾, 𝛾 ≥ 1, 𝛾 which

takes into account the overhead of context switching. Device

I will have to wait 10 × (𝑠𝑀/2) × N 𝛾 seconds to receive

results if it offloads a computation that will take it 10

seconds to complete to a server with a speed of s that is

shared by N mobile devices 𝛾. During our test, 𝛾 is set at

1.05.

Evaluation metrics:

• Resource Utilization: It speaks of the total amount

of resources that a job uses to finish its execution.

Resource Utilization (RU) is denoted by the

following by eqn (33)

𝑅𝑈 = 𝑅𝑎𝑣𝑙 − 𝑅𝑚𝑢 (33)

where Rnu stands for unused resources and Ravl stands for

available resources. Our particular work's processor and

memory utilisation are examples of resource usage. When

the other two procedures are merged, the percentage of a

specific approach is always higher. A graphic representation

of percentage usage of resources utilising different resource

allocation systems is shown in Table 1 and Figure 5. It

demonstrates that the proposed technique has the highest

resource utilisation for a variety of task sizes.

Table-1 Comparison of percentage utilization of resources

Task Size MOHEFT LBP-ACS MCIoT_RA_5G

20 65 69 71

40 68 72 75

60 71 74 79

80 73 78 81

100 75 81 83

120 79 85 85

140 81 88 89

160 83 91 93

180 89 92 94

200 91 93 95

Figure-5 Comparison of percentage utilization of resources

• Response Time: The amount of time that passes

between a task being launched and being finished is

referred to as the response time of a task. The

following can be used to express the reaction time

TSRes by eqn (34):

𝑇𝑆Res = 𝑇𝑆𝐶𝑇 − 𝑇𝑆𝐴𝑇 (34)

where TSAT is the task's arrival time and TSCT is the task's

completion time. Our particular work's processor and

memory utilisation are examples of resource usage. When

the other two procedures are merged, the percentage of a

specific approach is always higher. The maximum response

time is shown in Figure 6 and Table-2. This is essentially the

method that is suggested in our study to turn off passive

prime ministers. It takes part in the system of resource use.

Table-2 Comparison of response time

Task Size MOHEFT LBP-ACS MCIoT_RA_5G

20 55 61 65

40 59 63 68

60 61 65 72

80 63 68 75

100 68 71 79

120 71 73 81

140 75 75 83

160 77 77 86

180 81 83 88

200 83 85 89

International Journal on Future Revolution in Computer Science & Communication Engineering (IJFRCSCE)

ISSN: 2454-4248 Volume: 8 Issue: 3

DOI: https://doi.org/10.17762/ijfrcsce.v8i3.2094

Article Received: 10 June 2022 Revised: 20 August 2022 Accepted: 25 August 2022 Publication: 15 September 2022

__

40
IJFRCSCE | September 2022, Available @ http://www.ijfrcsce.org

Figure 6. Comparison of response time

• Power Consumption: It can be characterised as the

energy unit that each cloud server uses to distribute

resources. An energy management module is used

by management to minimise energy consumption in

this specific task. The power consumption solutions

used in real-time data centres, such as dynamic

voltage, frequency, and resource sleep, are

numerous, however they are insufficient for the

virtualized environment. When compared to current

methods, our suggested methodology produces

greater outcomes for energy reduction. Table 3 and

Figure 7 provide as evidence for this. Energy

management strategy described in this research

minimises primary energy consumption PM,

external energy consumption PM, and internal

communication PM.

Table-3 Comparison of Power consumption

Task Size MOHEFT LBP-ACS MCIoT_RA_5G

20 71 65 61

40 68 63 59

60 65 61 55

80 62 58 51

100 61 56 49

120 58 54 45

140 55 51 42

160 52 48 41

180 51 44 40

200 48 42 38

Figure 7: Comparison of power consumption

• QoS: QoS is description or measurement of a

service's total performance, particularly the

performance experienced by network users,

whether it be a cloud computing service, a

telephony service, or a computer network. The

table-4 and figure-8 shows QoS for proposed

technique in resource allocation with task

scheduling.

Table-4 Comparison of QoS

Task Size MOHEFT LBP-ACS MCIoT_RA_5G

20 45 52 59

40 46 55 62

60 48 59 65

80 51 61 67

100 53 63 72

120 55 66 75

140 59 71 79

160 61 73 81

180 63 75 83

200 65 78 85

Figure 8. Comparison of QoS

International Journal on Future Revolution in Computer Science & Communication Engineering (IJFRCSCE)

ISSN: 2454-4248 Volume: 8 Issue: 3

DOI: https://doi.org/10.17762/ijfrcsce.v8i3.2094

Article Received: 10 June 2022 Revised: 20 August 2022 Accepted: 25 August 2022 Publication: 15 September 2022

__

41
IJFRCSCE | September 2022, Available @ http://www.ijfrcsce.org

Table-5 Comparison of communication cost

Task Size MOHEFT LBP-ACS MCIoT_RA_5G

20 71 65 61

40 68 63 59

60 65 61 55

80 61 55 51

100 58 53 49

120 55 51 45

140 53 45 44

160 51 42 41

180 49 41 38

200 45 38 35

Figure 9. Comparison of communication cost

• Communication cost: The magnitude of the task's

input determines the communication cost. Bytes are

used to express this size. However, because we'll be

utilising relational database operations as our

examples, we'll frequently refer to size in terms of

the number of tuples. A Markov chain is used to

calculate the probability under the users, which

represents the query rates for each user as shown in

table 5 and figure 9.

5. Conclusion

For IoT applications that are time-sensitive, a paradigm that

is governed by cloud, fog, and edge computing may give a

solution. Additionally, fog nodes typically offer greater data

processing and repository capacity, which can be exploited

to boost performance and lower connection and latency

costs. This research proposed novel framework in mobile

cloud computing based resource allocation and task

scheduling integrated with IoT module. Here the resource

allocation has been carried out using virtual machine based

markov model infused wavelength division multiplexing.

Task scheduling is carried out using meta-heuristic moath

flame optimization with chaotic maps. The experimental

results has been carried out in terms of resource ulitization

of 95%, response time of 89%, computational cost of 35%,

power consumption of 38%, QoS of 85%. By minimising

the amount of time that user jobs need to be processed,

service providers can increase their income through the

efficient use of task scheduling and resource allocation of

cloud infrastructure. Usefulness of the suggested model in a

real-world scenario will be determined in future using a

significant amount of actual data in a real cloud

environment.

Reference:

[1]. Quasim, M. T. (2021). Resource management and task

scheduling for IoT using mobile edge computing. Wireless

Personal Communications, 1-18.

[2]. Aletri, O. Z., Alahmadi, A. A., Saeed, S. O., Mohamed, S.

H., El-Gorashi, T. E. H., Alresheedi, M. T., & Elmirghani,

J. M. (2020). Optimum resource allocation in optical

wireless systems with energy-efficient fog and cloud

architectures. Philosophical Transactions of the Royal

Society A, 378(2169), 20190188.

[3]. Ge, Y., Zhang, Y., Qiu, Q., & Lu, Y. H. (2012, July). A

game theoretic resource allocation for overall energy

minimization in mobile cloud computing system.

In Proceedings of the 2012 ACM/IEEE international

symposium on Low power electronics and design (pp. 279-

284).

[4]. Liang, H., Huang, D., Cai, L. X., Shen, X., & Peng, D.

(2011, April). Resource allocation for security services in

mobile cloud computing. In 2011 IEEE Conference on

Computer Communications Workshops (INFOCOM

WKSHPS) (pp. 191-195). IEEE.

[5]. Nadimi-Shahraki, M. H., Fatahi, A., Zamani, H., Mirjalili,

S., Abualigah, L., & Abd Elaziz, M. (2021). Migration-

based moth-flame optimization

algorithm. Processes, 9(12), 2276.

[6]. Mirjalili, S. (2015). Moth-flame optimization algorithm: A

novel nature-inspired heuristic paradigm. Knowledge-

based systems, 89, 228-249.

[7]. Movahedi, Z., & Defude, B. (2021). An efficient

population-based multi-objective task scheduling approach

in fog computing systems. Journal of Cloud

Computing, 10(1), 1-31.

[8]. Mijuskovic, A., Chiumento, A., Bemthuis, R., Aldea, A., &

Havinga, P. (2021). Resource management techniques for

cloud/fog and edge computing: An evaluation framework

and classification. Sensors, 21(5), 1832.

[9]. Bal, P. K., Mohapatra, S. K., Das, T. K., Srinivasan, K., &

Hu, Y. C. (2022). A Joint Resource Allocation, Security

with Efficient Task Scheduling in Cloud Computing Using

Hybrid Machine Learning Techniques. Sensors, 22(3),

1242.

International Journal on Future Revolution in Computer Science & Communication Engineering (IJFRCSCE)

ISSN: 2454-4248 Volume: 8 Issue: 3

DOI: https://doi.org/10.17762/ijfrcsce.v8i3.2094

Article Received: 10 June 2022 Revised: 20 August 2022 Accepted: 25 August 2022 Publication: 15 September 2022

__

42
IJFRCSCE | September 2022, Available @ http://www.ijfrcsce.org

[10]. Raj, R., Varalatchoumy, M., Josephine, V. L., Jegatheesan,

A., Kadry, S., Meqdad, M. N., & Nam, Y. (2022).

Evolutionary Algorithm Based Task Scheduling in IoT

Enabled Cloud Environment.

[11]. Sangaiah, A. K., Hosseinabadi, A. A. R., Shareh, M. B.,

Bozorgi Rad, S. Y., Zolfagharian, A., & Chilamkurti, N.

(2020). IoT resource allocation and optimization based on

heuristic algorithm. Sensors, 20(2), 539.

[12]. Wu, C. G., Li, W., Wang, L., & Zomaya, A. Y. (2021). An

evolutionary fuzzy scheduler for multi-objective resource

allocation in fog computing. Future Generation Computer

Systems, 117, 498-509.

[13]. Abohamama, A. S., El-Ghamry, A., & Hamouda, E.

(2022). Real-Time Task Scheduling Algorithm for IoT-

Based Applications in the Cloud–Fog

Environment. Journal of Network and Systems

Management, 30(4), 1-35.

[14]. Dewangan, B. K., Agarwal, A., Venkatadri, M., &

Pasricha, A. (2019). Self-characteristics based energy-

efficient resource scheduling for cloud. Procedia Computer

Science, 152, 204-211.

[15]. Wu, C. G., Li, W., Wang, L., & Zomaya, A. Y. (2021). An

evolutionary fuzzy scheduler for multi-objective resource

allocation in fog computing. Future Generation Computer

Systems, 117, 498-509.

[16]. Praveenchandar, J., & Tamilarasi, A. (2021). Dynamic

resource allocation with optimized task scheduling and

improved power management in cloud computing. Journal

of Ambient Intelligence and Humanized Computing, 12(3),

4147-4159.

[17]. Kandan, M., Krishnamurthy, A., Selvi, S., Sikkandar, M.

Y., Aboamer, M. A., & Tamilvizhi, T. (2022). Quasi

oppositional Aquila optimizer-based task scheduling

approach in an IoT enabled cloud environment. The

Journal of Supercomputing, 78(7), 10176-10190.

[18]. Ding, D., Fan, X., Zhao, Y., Kang, K., Yin, Q., & Zeng, J.

(2020). Q-learning based dynamic task scheduling for

energy-efficient cloud computing. Future Generation

Computer Systems, 108, 361-371.

[19]. Rjoub, G., Bentahar, J., Abdel Wahab, O., & Saleh

Bataineh, A. (2021). Deep and reinforcement learning for

automated task scheduling in large‐scale cloud computing

systems. Concurrency and Computation: Practice and

Experience, 33(23), e5919.

[20]. Singh, H., Bhasin, A., & Kaveri, P. R. (2021). QRAS:

efficient resource allocation for task scheduling in cloud

computing. SN Applied Sciences, 3(4), 1-7.

[21]. Kanbar, A. B., & Faraj, K. H. A. (2022). Region aware

dynamic task scheduling and resource virtualization for

load balancing in IoT-fog multi-cloud environment. Future

Generation Computer Systems.

