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ABSTRACT: In this talk, we will work almost exclusively with the Euler characteristic and some of the consequences of its topological 

invariance. We discuss by following that motivated the study of the characteristic. This gives a relation between topological invariant of the 

surface and a quantity derived from its combinatorial description. Secondly, we obtain an inequality relating the number of normal triangles and 

normal quadrilaterals, that depends on the maximum number of tetrahedrons that share a vertex. In this thesis, we disscuss this and related 

injectivity conditions and show that there are many rings. 
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I. INTRODUCTION 

The purpose of this paper is to introduce and investigate the concepts of Euler characteristics, which arise in algebraic topology as 

invariants describing topological spaces. Euler characteristics for finitely induce modules and topological invariant. 

The Euler characteristic of a module is well-defined whenever the 0
th

 homology group is finite if and only if the 

applicable compact. All through this paper, all rings are associative rings with unity and all modules are unitary right modules. 

Y. Utumi in a series of his papers on regular self injective rings observed three conditions on a ring which is satisfied if the ring is 

self injective. These conditions are currently known in the literature by conditions and subsequently extended to modules. 

A module is called finite direct injective if every finitely generated submodule isomorphic to a direct summand is itself a direct 

summand. It is the generalization of direct injective modules. 

A module in linear algebra, the most important structure is that of a vector space over a field. For commutative algebra it 

is therefore useful to consider the generalization of this concept to the case where the underlying space of scalars is a commutative 

ring R instead of a field. The resulting structure is called a module. 

In fact, there is a another more subtle reason why modules are very powerful. They are unify many other structures that 

you already know. 

Consequently general results on modules will have numerous consequences in the many different setups. So let us now 

start with definition of the modules. In principle, their theory that we will then quickly discuss in this chapter is entirely analogous 

to that of vector spaces. 

 In chapter 1, deals with some basic definitions are given. 

In chapter 2, we discussed about Euler characteristic and the grothendieck group. 

In chapter 3, illustrates the theorems and prepositions on injective modules. 

In chapter 4, refreshes some lemmas and corollary on Bifunctors. 

In chapter 5, obtained the prepositions and theorems on spectral sequences. 

 Finally, we end with conclusion and bibliography. 

 

II. BASIC DEFINITIONS 

DEFINITION: 1.1 

 An algebra consists of a vector space V over a field F, together with a binary operation of  multiplication on the set V of 

vectors, such that for all a ∈ F and α, β, γ ∈ v the following conditions are satisfied. 

1) (aα)β  = a(αβ) = α(aβ) 

2) (α + β)γ = αγ = βγ 

3) α(β + γ ) = αβ+αγ 

We shall somewhat incorrectly say of an algebra V over F.  Also V is an associative algebra over F, if in addition to the 

preceding three conditions. 

4) (αβ)γ  = α(βγ) for all α, β, γ ∈ V 

 

DEFINITION: 1.2 

 The algebraic structure (G,.) is a group if the binary operation, satisfying the following conditions. 
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1) Closure property: 

a b ∈ G for all a, b ∈ G 

2) Associativity: 

           (a.b)c = a(b.c) for all a, b, c ∈ G 

3)   Existence of identity: 

Then there exists an element e ∈ G such that,ea = a = ae for all a ∈ G. The element e is called the identity. 

4)  Existence of inverse: 

               If a ∈ G there exists an element b ∈ G such that ba = e = ab 

              The element b is called the inverse of a and we write b = a
-1 

  Thus a
-1

 is an element of G such that a
-1

a = e = aa
-1

 

Example: 

 The set of all integers I is a group with respect to the operation of addition of integers. 

DEFINITION: 1.3 

A subset H of a group G is called a subgroup if the subgroup has the following properties 

1) Closure: 

    If a ∈ H, b ∈ H then a b ∈ H 

2) Identity: 

   If I ∈ H. 

3) Inverse: 

    If a ∈ H then a
-1 ∈ H 

DEFINITION: 1.4 

A Permutation σ∈Sn is a cycle if it has atmost one orbit containing more than one element. 

DEFINITION: 1.5 

 Let (E, d) be a complex we let z
i
(E) = k e r d

i 
and call z

i
(E) the module of i-cycles.  

We frequently write z
i
 instead of z

i
(E)respectively. 

 

III. EULER CHARACTERISTIC AND THEGROTHENDIECK GROUP 

Theorem: 2.1 

  Let F be a complex, which is of even length if it is closed.  Assume that φ(F
i
) is defined for all i, φ(F

i
) = 0 for almost all 

i, and H
i
(F) = 0 for almost all i. Then φ(F) is defined, and  

   Xφ(F) =   −1 𝑖
i 
φ(F

i
) 

Proof: 

 Let Z
i
 and B

i
 be the groups of i-cycles and i-boundaries in b F

i
 respectively. 

 We have an exact sequence 

    0 ⟶Z
i⟶ F

i ⟶ B
i+1 ⟶ 0 

Hence χφ(F) is defined, and 

   φ (F
i
) = φ(Z

i
) + φ(B

i+1
) 

Taking the alternating sum, our conclusion follows at once. 

  A complex whose homology is trivial is called acyclic. 

 Hence the proof is complete. 

COROLLARY: 2.2      

            Let F be an acyclic complex, such that φ(F
i
) is defined for all i, and equal to o for almost all i.  If F is closed, we assume 

that F has length.  Then 

    ϰφ(F) = 0 

 In many applications, an open complex F is such that F
i
 = 0 for almost all i. 

One can then treat this complex as closed complex by defining an additional map going from a zero on the far left. 

 Thus in this case, the study of such an open complex is reduced to the study of closed complex. 

 

 

IV. INJECTIVE MODULES 

Theorem:3.1 

 Every module is sub module of an injective module. 

Proof: 
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  The proof will be given by dualizing the situation, with some lemmas. 

  We first look at the situation in the category of abellan groups. 

 If M is an abelin group, let its dual group be M∧=Hom(M, Q/Z). 

  If F is a Free abelian group, it is reasonable to exact, and in fact it is easily proved that its dual F∧ is an injective module. 

Since injectivity is the dual notation of projectivetivity. 

  Furthermore,  

M has a natural map into the double dual M∧∧. 

Which is shown to be a monomorphism. 

  Now, 

Represent M∧ as a quotient of a free abelian group, 

      F⟶M∧⟶0 

Dualizing this sequence yields a monomorphism 

      0⟶M∧∧⟶F∧, 

And since M is embedded naturally as a subgroup of M∧∧. 

We get, 

The desired embedding of M as a subgroup of F∧. 

 This proof also works in general. 

There are details to be filled in. 

  First we have to prove that, 

The dual of a free module is injective. 

Second, 

We have to be careful when passing from the category of abelian groups to the category of modules over an 

arbitrary ring. 

 We now carry out the details. 

 We say that an abelian group T is divisible if for every integer m. 

The homomorphism mT:x⟶mx is surjective. 

Hence the proof. 

 

V. BIFUNCTORS 

Lemma:4.1 

 Let T be a bifunctor  satisfying HOM 1,HOM 2 Let A ∈ and let MA⟶A⟶0. that is  

   ⟶M1⟶M0⟶A⟶0 

be a T-exact resolution of A. Let F
n
(B) = H

n
(T(M,B) for B ∈ ℬ.  Then F is a δ-functor and F

o
(B) = T(A, B).  If in addition T 

satisfies HOM 3, then      F
n
(J) = 0 for J injective and n≧1. 

Proof: 

     Given an exact sequence 

  0⟶B’⟶B⟶B” ⟶0 

     We get an exact sequence of complexes 

  0⟶T(M, B
’
)vT(M, B)vT(M, B

”
) ⟶0 

     When a cohomology sequence which makes A into a δ-functor. 

     For n = 0 we get F
o
(B) = T(A,B)  

Because X↣T(X,B) is contravariant and left exact for X∈. 

If B is injective. 

Then F
n
(B) = 0 for n ≧1 by HOM 3 

Because X↣T(X,B) is exact 

      This proves the lemma. 

 

VI. SPECTRAL SEQUENCES 

Proposition: 5.1 

 Let F be a filtered differential object. Then there exist a spectral sequence {Er} with:  

   E0
p

 =F
p
/F

p+1
 ;E1

p
= H(G𝑟

p
F); E∞

p
= Gr

p
 H(F) 

Proof : 
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 Define 

   𝑍𝑟
𝑝

 = {x ∈F
p
such that d x ∈F

p +r
} 

   E𝑟
𝑝
 = Z𝑟

𝑝
 / [dZ𝑟−1

𝑝−(𝑟−1)
+ Z𝑟−1

𝑝+1
 ] 

 The definition of E𝑟
𝑝
  makes sense, since 𝑍𝑟

𝑝
is immediately verified to contain                              

dZ𝑟−1
𝑝−(𝑟−1)

 + Z𝑟−1
𝑝+1

 

 Furthermore, d maps 𝑍𝑟
𝑝

into 𝑍𝑟
𝑝+𝑟

 ; and hence includes a homomorphism 

   dr: E𝑟
𝑝

E𝑟
𝑝+𝑟

 

 We shall now compute the homology and show that it is what we want. 

 First, for the cycles: An element x ∈ Z𝑟
𝑝
 represents a cycle of degree p in Er if and only if dx ∈ d𝑍𝑟

𝑝+1
 

In other words, 

 dx = dy + z, with y∈Z𝑟−1
𝑝+1

    and Z∈Z𝑟−1
𝑝+𝑟+1

 

write, x = y+u, so du = z 

Then, u ∈F
n
and du∈F

p+r+1
, that is u ∈𝑍𝑟+1

𝑝  

If follows that, 

 P-cycles of Er=(𝑍𝑟+1
𝑝

 + 𝑍𝑟−1
𝑝+1

) / (dZ𝑟−1
𝑝−𝑟+1

 + Z𝑟−1
𝑝+1

) 

On the other hand, 

 The P-boundaries in Er are represented by elements of d𝑍𝑟
𝑝−𝑟

 

Which containsdZ𝑟−1
𝑝−𝑟+1

 

Hence, 

 P-boundaries of Er= (dZ𝑟
𝑝−𝑟

 + Z𝑟−1
𝑝+1

) / (d𝑍𝑟
𝑝−𝑟

+ Z𝑟−1
𝑝+1

 ) 

Therefore, 

  H
p
(Er) = (𝑍𝑟+1

𝑝
+ Z𝑟−1

𝑝+1
) / (𝑍𝑟

𝑝−𝑟
+ Z𝑟−1

𝑝+1
) 

             = 𝑍𝑟+1
𝑝

/ (𝑍𝑟+1
𝑝

n(𝑍𝑟
𝑝−𝑟

+ Z𝑟−1
𝑝+1

) 

Since, 

 𝑍𝑟+1
𝑝

⊃d𝑍𝑟
𝑝−𝑟

 and 𝑍𝑟+1
𝑝

⋂Z𝑟−1
𝑝+1

  = 𝑍𝑟−1
𝑝

 

It follows that, 

 H
p
(Er) = 𝑍𝑟+1

𝑝
/ (d𝑍𝑟

𝑝−𝑟
+ Z𝑟−1

𝑝+1
) = E𝑟+1

𝑝
 

Thus proving the property of a spectral sequence. 

 

VII. CONCLUSION 

Clearly, the Euler characteristic is invariance. It is very important in the classification of surfaces, as we learned in class. 

There are also many more ways to use it with simplified complexes. But that important much more detail than I notice was 

required for this paper. 

 But I hope that at the very least this paper shed some light on the importance and uses of Euler characteristic as well as 

the different ways to calculate it. We hope this introduction has sparked an interest in injective modules and will motivate the 

reader to study them further. 
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