
International Journal on Future Revolution in Computer Science & Communication Engineering ISSN: 2454-4248
Volume: 4 Issue: 11 01 – 06

1
IJFRCSCE | November 2018, Available @ http://www.ijfrcsce.org

Effective and Efficient Algorithms for Concise Range Queries

K. Soni Sharmila,

Assistant Professor,

Department of CSE,

A. S. N. V. Bhogesh,

Assistant Professor,

Department of CSE,

D. N. R. College of Engineering and Technology.

areti.bhogesh@gmail.com

Abstract- With the advance of wireless communication technology, it is quite common for people to view maps or get related services from the

handheld devices, such as mobile phones and PDAs. Range queries, as one of the most commonly used tools, are often posed by the users to

retrieve needful information from a spatial database. However, due to the limits of communication bandwidth and hardware power of handheld

devices, displaying all the results of a range query on a handheld device is neither communication efficient nor informative to the users. This is

simply because that there are often too many results returned from a range query.

In view of this problem, we present a novel idea that a concise representation of a specified size for the range query results, while incurring

minimal information loss, shall be computed and returned to the user. Such a concise range query not only reduces communication costs, but

also offers better usability to the users, providing an opportunity for interactive exploration. The usefulness of the concise range queries is

confirmed by comparing it with other possible alternatives, such as sampling and clustering. Unfortunately, we prove that finding the optimal

representation with minimum information loss is an NP-hard problem. Therefore, we propose several effective and nontrivial algorithms to find

a good approximate result. Extensive experiments on real-world data have demonstrated the effectiveness and efficiency of the proposed

techniques.

Keywords: Spatial databases, range queries, algorithms.

__*****___

I. Introduction

General query processing for large relational databases and

OLAP data warehouses has posed similar challenges. For

example, approximate, scalable query processing has been a

focal point in the recent work [1], where the goal is to

provide light, usable representations of the query results

early in the query processing stage such that an interactive

query process is possible. In fact, Jermaine et al. [2] argued

to return concise representations of the final query results in

every possible stage of a long-running query evaluation.

However, the focus of [2] is on join queries in the relational

database and the approximate representation is a random

sample of the final query results. The goal of this work is

different and random sampling is not a good solution for our

problem.

Motivated by these observations, this work introduces the

concept of concise range queries, where concise collectively

represents the light, usable, and interactive requirements laid

out above. Formally, it represent a point set using a

collection of bounding boxes and their associated counts as

a concise representation of the point set. It only return R as a

concise representation of a point set to the user, while the

underlying partitioning P is only used by the DBMS for

computing such an R internally. Note that the definition

above can be easily extended to a set of objects of arbitrary

shapes, rather than just points. In particular, in Section 4, I

will apply the same notion on a set of rectangles. But for

now I will focus on point sets. Clearly, for fixed dimensions,

the amount of bytes required to represent R is only

determined by its size k.

Spatial databases have witnessed an increasing number of

applications recently, partially due to the fast advance in the

fields of mobile computing and embedded systems and the

spread of the Internet. For example, it is quite common these

days that people want to figure out the driving or walking

directions from their handheld devices (mobile phones or

PDAs). However, facing the huge amount of spatial data

collected by various devices, such as sensors and satellites,

and limited bandwidth and/or computing power of handheld

devices, how to deliver light but usable results to the clients

is a very interesting, and of course, challenging task.

It present a novel idea that a concise representation of a

specified size for the range query results, while incurring

minimal information loss, shall be computed and returned to

the user. Such a concise range query not only reduces

communication costs, but also offers better usability to the

users, providing an opportunity for interactive exploration.

The usefulness of the concise range queries is confirmed by

comparing it with other possible alternatives, such as

sampling and clustering. Unfortunately, I prove that finding

D.N.R. College of Engineering and Technology.

sonisharmila.kadimi@gmail.com

International Journal on Future Revolution in Computer Science & Communication Engineering ISSN: 2454-4248
Volume: 4 Issue: 11 01 – 06

2
IJFRCSCE | November 2018, Available @ http://www.ijfrcsce.org

the optimal representation with minimum information loss is

an NP-hard problem. Therefore, I propose several effective

and nontrivial algorithms to find a good approximate result.

Extensive experiments on real-world data have

demonstrated the effectiveness and efficiency of the

proposed techniques.

For purpose, light refers to the fact that the representation of

the query results must be small in size, and it is important

for three reasons. First of all, the client-server bandwidth is

often limited. This is especially true for mobile computing

and embedded systems, which prevents the communication

of query results with a large size. Moreover, it is equally the

same for applications with PCs over the Internet. In these

scenarios, the response time is a very critical factor for

attracting users to choose the service of a product among

different alternatives, e.g., Google Map versus MapQuest,

since long response time may blemish the user experience.

This is especially important when the query results have

large scale.

Second, client’s devices are often limited in both

computational and memory resources. Large query results

make it extremely difficult for clients to process, if not

impossible. This is especially true for mobile computing and

embedded systems. Third, when the query result size is

large, it puts a computational and I/O burden on the server.

The database indexing community has devoted a lot of effort

in designing various efficient index structures to speed up

query processing, but the result size imposes an inherent

lower bound on the query processing cost. If I return a small

representation of the whole query results, there is also the

potential of reducing the processing cost on the server and

getting around this lower bound.

II. Problem definition

The purpose of this project deals with the, light refers to the

fact that the representation of the query results must be

small in size, and it is important for three reasons. First of

all, the client-server bandwidth is often limited. This is

especially true for mobile computing and embedded

systems, which prevents the communication of query results

with a large size. Too much information may do more harm

than good, which is commonly known as the information

overload problem. The goal of a concise range query is to

find a concise representation, with the user-specified size,

for all the points inside the query range. Ideally, one would

like to have a concise representation of minimum

information loss.

III. System Implementation

Here focusesing on the problem of finding a concise

representation for a point set P with minimum information

loss. In one dimension, a simple dynamic programming

algorithm finds the optimal solution in polynomial time [3].

However, this problem becomes NP-hard in two

dimensions. Then, I settle for efficient heuristic algorithms

for two or higher dimensions. The above BFS traversal

treats all nodes alike in the R-tree and will always stop at a

single level. But, intuitively, I should go deeper into regions

that are more “interesting,” i.e., regions deserving more user

attention.

These regions should get more budgets from the k bounding

boxes to be returned to the user. Therefore, I would like a

quantitative approach to measuring how “interesting” a node

in the R-tree is, and a corresponding traversal algorithm that

visits the R-tree adaptively. In the algorithm R-Adaptive [4],

I start from the root of the R-tree with an initial budget of k,

and traverse the tree top-down recursively. Suppose I are at

a node u with budget k, and u has b children u1, . . . ,ub

those MBRs are either completely or partially inside Q. Let

the counts associated with them be n1; . . . ; nb. Specifically,

if BR(ui) is completely inside Q, I set ni ¼ nui ; if it is

partially inside, I compute ni proportionally as in

n𝑢 .
Area MBR 𝑢 ∩ Q

Area Q

Fig: System Architecture

IV. Optimal Solution in One Dimension

International Journal on Future Revolution in Computer Science & Communication Engineering ISSN: 2454-4248
Volume: 4 Issue: 11 01 – 06

3
IJFRCSCE | November 2018, Available @ http://www.ijfrcsce.org

We first give a dynamic programming algorithm for

computing the optimal concise representation for a set of

points P lying on a line. Later, in Section 3.3, I will extend it

to higher dimensions, leading to an efficient heuristic [7].

Let p1,,…,pn be the points of P in sorted order. Let 𝑃𝑖,𝑗

represent the optimal partitioning underlying the best

concise representation, i.e., with the minimum information

loss, for the first i points of size 𝑗, 𝑖 ≥ 𝑗 optimal solution is

simply the concise representation for 𝑃𝑛,𝑘 and 𝑃𝑛,𝑘could be

found using a dynamic programming approach. The key

observation is that in one dimension, the optimal

partitioning always contains segments that do not overlap,

i.e., I should always create a group with consecutive points

without any point from another group in-between.

V. Hardness of the Problem in 2D

Not surprisingly, like many other clustering problems, for a

point set P in IR2, the problem of finding a concise

representation of size k with minimum information loss is

NP-hard. Also, similar to other clustering problems in

euclidean space, the NP-hardness proof is quite involved. It

give a carefully designed construction that gives a reduction

from PLANAR 3-SAT to the concise representation

problem. In the classical 3-SAT problem, there are n

Boolean variables x1; . . . ; xn and m clauses C1; . . . ; Cm,

where each clause is a disjunction of three variables or their

negations. The problem is to decide if there exists an

assignment of variables such that all clauses evaluate to true.

Assume that I map each variable and each clause to a vertex

of an undirected graph G. Then, two nodes u and v in graph

G are connected if and only if u represents a clause that

contains the variable (or its negation) represented by v. If G

is planar, the problem is known as PLANAR 3-SAT. It is an

NP-complete problem [8]. The problem remains NP-

complete even if each variable and its negation appear in at

most three clauses. Note that in this case, any vertex in G

has degree at most 3. Given an instance of PLANAR 3-

SAT, I construct a point set P as follows: First, since any

vertex in G has degree at most 3, I can find a planar

embedding of G such that all the vertices lie on grid points

and all the edges follow nonintersecting grid paths. Such an

embedding can be found in O(n+m) time and the resulting

embedding has area 𝑂 𝑛 + 𝑚 2 [9].

VI. Heuristics for Two or More Dimensions

Given the hardness result, it is very unlikely that it can find

an optimal concise representation R for a given point set P

in polynomial time in two or more dimensions. Thus, in this

section, I try to design efficient heuristic algorithms that

produce an R with low information loss, although not

minimum. Since the problem is also a clustering problem, it

is tempting to use some popular clustering heuristic, such as

the well-known k-means algorithm, for our problem as well.

However, since the object function makes a big difference in

different clustering problems, the heuristics designed for

other clustering problems do not work for our case. The k-

anonymity problem does share the same object function

with us, but the clustering constraint there is that each

cluster has at least k points, while I require that the number

of clusters is k. These subtle but crucial differences call for

new heuristics to be tailored just for the concise

representation problem.

Given the optimal algorithm in one dimension, a

straightforward idea is to use a function 𝐼𝑅𝑑 →IR to map the

points of P from higher dimensions down to one dimension.

Such an ordering function must somehow preserve the

proximity relationships among the points. Many techniques

exist for such a purpose (see [10] for a detailed review),

among them the space-filling curves [11] have proved to be

a popular choice. A space-filling curve traverses the space in

a predetermined order. The most widely used space-filling

curve is the Hilbert curve. The hth-order Hilbert curve has

2hd cells in d dimensions and visits all the cells in the

manner shown in Fig. 5. Each cell will be assigned a Hilbert

value in sequence starting from 0, and all points falling

inside the cell will get the same Hilbert value. Our Hilbert-

curve based algorithm, called HGroup, is shown in

Algorithm 1. The basic idea is to first compute the Hilbert

value for each point in P, and sort all points by this value,

mapping them to one dimension

VII. Algorithm 1: The algorithm HGroup

Compute the Hilbert value h(𝑝𝑖) for each point 𝑝𝑖є P Sort P

by h(𝑝𝑖) and map it to one dimension; Find the partitioning

P using dynamic programming; Build the concise

representation R for P and return;

Fig: The third-order Hilbert curve in two dimensions

International Journal on Future Revolution in Computer Science & Communication Engineering ISSN: 2454-4248
Volume: 4 Issue: 11 01 – 06

4
IJFRCSCE | November 2018, Available @ http://www.ijfrcsce.org

VIII. Algorithm 2: Algorithm IGroup

It presents another, more direct algorithm in two or more

dimensions. It is an iterative algorithm that finds the k

groups P1; . . . ; Pk, one at a time. This algorithm is called

as I Group. In each iteration, it start with a seed, randomly

chosen from the remaining points, and greedily add points

into the group one by one. In the ith iteration, I first

initialize the group Pi to include only the seed. Let U be the

set of remaining points. When I stop adding points and

obtain a Pi, I record that together with it𝑠 𝐿 (𝑝𝑖) achieved in

the end, and call it a candidate. To improve quality, I carry

out the same process with a number of different seeds, and

choose the best candidate that has attained the lowest 𝐿 (𝑝𝑖)

. Then, I proceed to the next group 𝑃𝑖+1 . Finally, for the last

group Pk, I simply put all the remaining points into it. I give

the details of the complete algorithm IGroup in Algorithm 2.

ALGORITHM 2: I-Group

U P;

S number of seeds to try;

For i=1,….,k-1 do

Ĺ𝑏𝑒𝑠𝑡 = ;

𝑈′ ←U;

For j=1,…..,s do

U← 𝑈′

𝑝𝑠 ←randomly chosen seed from U;

𝑃𝑖
′ ← 𝑝𝑠;

While true do

Let p=arg𝑚𝑖𝑛𝑝Ĺ(𝑃𝑖
′ ∪{p});

If Ĺ(𝑃𝑖
′ ∪{p})< Ĺ(𝑃𝑖

′) then

𝑃𝑖
′ ← 𝑃𝑖

′ ∪ {𝑝};

U U-{p};

Else break;

If Ĺ(𝑃𝑖
′)< Ĺ𝑏𝑒𝑠𝑡 then

Ĺ𝑏𝑒𝑠𝑡 ← Ĺ (𝑃𝑖
′);

𝑝𝑖 ← 𝑃𝑖
′;

U U-𝑝𝑖 ;

Output 𝑝𝑖 ;

There is k - 1 iterations in the algorithm. In each iteration, it

check each of the n points and choose the best one to add to

the current group. In the worst case, I could check all the

points O(n) times. Each iteration needs to be repeated for s

times with s randomly chosen seeds. So the worst case

running time of I-Group is O(𝑠𝑘𝑛)2.

IX. Query processing with r-trees

In order to use the algorithms to answer a concise range

query Q with budget k from the client, the database server

would first need to evaluate the query as if it were a

standard range query using some spatial index built on the

point set P, typically an R-tree. After obtaining the complete

query results P 𝑄, the server then partitions P 𝑄 into k

groups and returns the concise representation. However, as

the main motivation to obtain a concise answer is exactly

because P 𝑄 is too large, finding the entire P 𝑄 and

running the algorithms. It presents algorithms that process

the concise range query without computing P 𝑄 in its

entirety. The idea is to first find 𝑘1 bounding boxes, for

some 𝑘1 > k, that collectively contain all the points in P

 𝑄 by using the existing spatial index structure on P. Each

of these bounding boxes is also associated with the count of

points inside. Then, I run a weighted version of the

algorithm and grouping these 𝑘1 bounding boxes into k

larger bounding boxes to form the concise representation R.

Typically 𝑘1 ≪ |P 𝑄 | , so it could expect significant

savings in terms of I/O and CPU costs as compared with

answering the query exactly. Therefore, adopting concise

range queries instead of the traditional exact range queries

not only solves the bandwidth and usability problems, but

also leads to substantial efficiency improvements.

Fig: R-Tree

The algorithms presented in this section in general work

with any space partitioning index structure; for

concreteness, I will proceed with the R-tree, which is

arguably the most widely used spatial index structure. The

R-tree [13] and its variants (R-tree in particular [14]) all

have the following structure. Suppose the disk block size is

B. We first group_ B points in proximity area into a

minimum bounding rectangle (MBR); these points will be

stored at a leaf on the R-tree. These MBRs are then further

grouped together level by level until there is only one left.

Each node u in the R-tree is associated with the MBR

enclosing all the points stored below, denoted by MBR(u).

Each internal node also stores the MBRs of all its children.

An example of the R-tree is illustrated in Fig. 6. Different R-

International Journal on Future Revolution in Computer Science & Communication Engineering ISSN: 2454-4248
Volume: 4 Issue: 11 01 – 06

5
IJFRCSCE | November 2018, Available @ http://www.ijfrcsce.org

tree variants only differ in the rule show the MBRs or points

are grouped together. The standard range query Q can be

processed using an R-tree as follows: I start from the root of

the R-tree, and check the MBR of each of its children. Then,

I recursively visit any node u whose MBR intersects or falls

inside Q. When I reach a leaf, I simply return all the points

stored there that are inside Q. In this section, I in addition

assume that each node u in the R-tree also keeps nu, the

number of the points stored below its sub tree. Such counts

can be easily computed and maintained in the R-tree.

X. Algorithm R-BFS

The straightforward way to find k0 such MBRs is to visit the

part of the R-tree inside Q in a BFS manner, until I reach a

level where there are at least _k MBRs. I call this algorithm

R-BFS. In particular, for any node u whose MBR is

complete inside Q, I directly return MBR(u) together with

nu. For any node u whose MBR is partially inside Q, I

return the intersection of the MBR(u) and Q, while the

associated count is estimated as

𝑛𝑖 .
Area (MBR (𝑢 𝑖) ∩𝑄)

𝐴𝑟𝑒𝑎 (𝑄)

 assuming uniform distribution of the points in MBR(u).

XI. Algorithm R-Adaptive

The BFS traversal treats all nodes alike in the R-tree and

will always stop at a single level. But, intuitively, it should

go deeper into regions that are more “interesting,” i.e.,

regions deserving more user attention. These regions should

get more budget from the k bounding boxes to be returned to

the user. Therefore, I would like a quantitative approach to

measuring how “interesting” a node in the R-tree is, and a

corresponding traversal algorithm that visits the R-tree

adaptively.

In the algorithm R-Adaptive, I start from the root of the R-

tree with an initial budget of k=αk, and traverse the tree top-

down recursively. Suppose I am at a node u with budget k,

and u has b children u1; . . . ; ub whose MBRs are either

completely or partially inside Q. Let the counts associated

with them be n1; . . . ; nb. Specifically, if MBR(ui) is

completely inside Q, I set 𝑛𝑖 = 𝑛𝑢 ; if it is partially inside, I

compute ni proportionally as in (4).

ALGORITHM 3: Recursive call visit(u,k)

Let 𝑢1,……, 𝑢𝑏 be u’s chidren whose

MBRs are inside or partially inside Q;

Let 𝑛𝑖 =number of points inside MBR(𝑢𝑖

)∩ 𝑄;

If b>=k then

Output MBR(𝑢𝑖) ∩ 𝑄 with 𝑛𝑖 for all I;

Return;

Let 𝐴𝑖 =Area(MBR(𝑢𝑖) ∩ 𝑄);

Compute 𝑘𝑖 as in for all i=1,……,b;

For i=1,…..,b do

If 𝑘𝑖 =1 then

Output MBR(𝑢𝑖) ∩ 𝑄 with 𝑛𝑖

Else

Visit(𝑢𝑖 , 𝑘𝑖);

XII. Performance Analysis

Input data

Spatial databases have witnessed an increasing number of

applications recently, partially due to the fast advance in the

fields of mobile computing and embedded systems and the

spread of the Internet. For example, it is quite common these

days that people want to figure out the driving or walking

directions from their handheld devices (mobile phones or

PDAs). However, facing the huge amount of spatial data

collected by various devices, such as sensors and satellites,

and limited bandwidth and/or computing power of handheld

devices, how to deliver light but usable results to the clients

is a very interesting, and of course, challenging task.

Collected spatial data are provided as an input.

Performance is measured in terms of the output provided by

the application. Requirement specification plays an

important part in the analysis of a system. Only when the

requirement specifications are properly given, it is possible

to design a system, which will fit into required environment.

It rests largely with the users of the existing system to give

the requirement specifications because they are the people

who finally use the system. This is because the

requirements have to be known during the initial stages so

that the system can be designed according to those

requirements. It is very difficult to change the system once

it has been designed and on the other hand designing a

system, which does not cater to the requirements of the user,

is of no use.

XIII. Result Analysis

This paper implemented two base algorithms, HGroup and

IGroup, as well as the two R-tree traversal algorithms RBFS

and R-Adaptive. Specifically, I used the R*-tree [14] to

index all the points in the data set. The IGroup algorithms

first traverse the R-tree to produce a number of MBRs and

feed them into the base algorithms, so I have, in total, two

combinations: R-BFS + IGroup, R-BFS + HGroup, R-

Adaptive + IGroup, and R-Adaptive + HGroup. The straw-

men I compare against are the k-means clustering algorithm

and the MinSkew histogram [15]. In particular, for k-means

and MinSkew, I first obtain all the data points in the query

region via R-tree, and then conduct either of the two

methods to obtain clusters/partitions.

International Journal on Future Revolution in Computer Science & Communication Engineering ISSN: 2454-4248
Volume: 4 Issue: 11 01 – 06

6
IJFRCSCE | November 2018, Available @ http://www.ijfrcsce.org

It first did some test queries to see if the concise

representation indeed gives the user some intuitive high

level ideas about the query results. The resulting concise

representations can be overlapping with each other.

However, this is usually not a problem for the user

perception, as long as I render the higher density rectangles

in front of the lower density ones. the average information

loss per point in the concise representations returned, where

I observe the following. First, the two IGroup-based variants

produce much better results than the two HGroup-based

variants. The explanation is possibly that, since the Hilbert

curve imposes a linear order on the 2D data set, some

important geometric properties are lost. While Hilbert-

curve-based clustering algorithms [12] generally work well,

our problem is fundamentally different from traditional

clustering problems. Thus, simply extending the 1D

dynamic programming algorithm to two dimensions by

Hilbert curves does not work as well as IGroup, which is

directly designed for two dimensions. Second, coupled with

the same grouping algorithm, R-Adaptive works much

better than R-BFS. This means that visiting the R-tree more

selectively does not only save the traversal cost, but also

leads to better quality of the results. In addition, I observe

that larger ks improve the quality for all the algorithms. This

is intuitive, since as the size of the concise representation

increases, it becomes closer and closer to the exact results.

XIV. Conclusion

A new concept that of concise range queries has been

proposed in this paper, which simultaneously addresses the

following three problems of traditional range queries. First,

it reduces the query result size significantly as required by

the user. The reduced size saves communication bandwidth

and also the client’s memory and computational resources,

which are of highest importance for mobile devices. Second,

although the query size has been reduced, the usability of

the query results has been actually improved. The concise

representation of the results often gives the user more

intuitive ideas and enables interactive exploration of the

spatial database. Finally, I have designed R-tree-based

algorithms so that a concise range query can be processed

much more efficiently than evaluating the query exactly,

especially in terms of I/O cost. This concept, together with

its associated techniques presented here, could greatly

enhance user experience of spatial databases, especially on

mobile devices, by summarizing “the world in a nutshell.”

XV. Future Work

The basic idea of representing range queries in a concise

format .However, the only technical contents in are the basic

1D dynamic programming algorithm and the HGroup

algorithm. The NP-hardness result for two dimensions, the

IGroup algorithm, the R-tree-based algorithms, the

extensions, as well as the experiments, are all new in this

paper.

References

[1] X. Lin, Y. Yuan, Q. Zhang, and Y. Zhang, “Selecting Stars:

The k Most Representative Skyline Operator,” Proc. Int’l

Conf. Data Eng. (ICDE), 2007.

[2] C. Jermaine, S. Arumugam, A. Pol, and A. Dobra,

“Scalable Approximate Query Processing with the dbo

Engine,” Proc. ACM SIGMOD, 2007.

[3] G. Ghinita, P. Karras, P. Kalnis, and N. Mamoulis, “Fast

Data Anonymization with Low Information Loss,” Proc.

Int’l Conf. Very Large Data Bases (VLDB), 2007.

[4] G. Aggarwal, T. Feder, K. Kenthapadi, S. Khuller, R.

Panigrahy, D. Thomas, and A. Zhu, “Achieving Anonymity

via Clustering,” Proc. Symp. Principles of Database

Systems (PODS), 2006.

[5] J. Xu, W. Wang, J. Pei, X. Wang, B. Shi, and A.W.-C. Fu,

“Utility- Based Anonymization Using Local Recoding,”

Proc. ACM SIGKDD, 2006.

[6] C. Bo¨hm, C. Faloutsos, J.-Y. Pan, and C. Plant, “RIC:

Parameter- Free Noise-Robust Clustering,” ACM Trans.

Knowledge Discovery from Data, vol. 1, no. 3, pp. 10-1-

10-28, 2007.

[7] R.T. Ng and J. Han, “Efficient and Effective Clustering

Methods for Spatial Data Mining,” Proc. Int’l Conf. Very

Large Data Bases (VLDB), 1994.

[8] D. Lichtenstein, “Planar Formulae and Their Uses,” SIAM

J. Computing, vol. 11, no. 2, pp. 329-343, 1982.

[9] R. Tamassia and I.G. Tollis, “Planar Grid Embedding in

Linear Time,” IEEE Trans. Circuits and Systems, vol. 36,

no. 9, pp. 1230-1234, Sept. 1989.

[10] H.V. Jagadish, B.C. Ooi, K.-L. Tan, C. Yu, and R. Zhang,

“iDistance: An Adaptive B+-Tree Based Indexing Method

for Nearest Neighbor Search,” ACM Trans. Database

Systems, vol. 30,no. 2, pp. 364-397, 2005.

[11] H. Samet, The Design and Analysis of Spatial Data

Structures. Addison-Wesley Longman Publishing Co., Inc.,

1990.

[12] B. Moon, H.v. Jagadish, C. Faloutsos, and J.H. Saltz,

“Analysis of the Clustering Properties of the Hilbert Space-

Filling Curve,” IEEE Trans. Knowledge and Data Eng.,

vol. 13, no. 1, pp. 124-141, Jan. 2001.

[13] A. Guttman, “R-Trees: A Dynamic Index Structure for

Spatial Searching,” Proc. ACM SIGMOD, 1984.

[14] N. Beckmann, H.P. Kriegel, R. Schneider, and B. Seeger,

“The R-Tree: An Efficient and Robust Access Method for

Points and Rectangles,” Proc. ACM SIGMOD, 1990.

[15] T. Zhang, R. Ramakrishnan, and M. Livny, “BIRCH: An

Efficient Data Clustering Method for Very Large

Databases,” Proc. ACM SIGMOD, 1996.

