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Abstract- With the advance of wireless communication technology, it is quite common for people to view maps or get related services from the 

handheld devices, such as mobile phones and PDAs. Range queries, as one of the most commonly used tools, are often posed by the users to 

retrieve needful information from a spatial database. However, due to the limits of communication bandwidth and hardware power of handheld 

devices, displaying all the results of a range query on a handheld device is neither communication efficient nor informative to the users. This is 

simply because that there are often too many results returned from a range query.  

     

In view of this problem, we present a novel idea that a concise representation of a specified size for the range query results, while incurring 

minimal information loss, shall be computed and returned to the user. Such a concise range query not only reduces communication costs, but 

also offers better usability to the users, providing an opportunity for interactive exploration. The usefulness of the concise range queries is 

confirmed by comparing it with other possible alternatives, such as sampling and clustering. Unfortunately, we prove that finding the optimal 

representation with minimum information loss is an NP-hard problem. Therefore, we propose several effective and nontrivial algorithms to find 

a good approximate result. Extensive experiments on real-world data have demonstrated the effectiveness and efficiency of the proposed 

techniques. 
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I. Introduction 

General query processing for large relational databases and 

OLAP data warehouses has posed similar challenges. For 

example, approximate, scalable query processing has been a 

focal point in the recent work [1], where the goal is to 

provide light, usable representations of the query results 

early in the query processing stage such that an interactive 

query process is possible. In fact, Jermaine et al. [2] argued 

to return concise representations of the final query results in 

every possible stage of a long-running query evaluation. 

However, the focus of [2] is on join queries in the relational 

database and the approximate representation is a random 

sample of the final query results.  The goal of this work is 

different and random sampling is not a good solution for our 

problem. 

Motivated by these observations, this work introduces the 

concept of concise range queries, where concise collectively 

represents the light, usable, and interactive requirements laid 

out above. Formally, it represent a point set using a 

collection of bounding boxes and their associated counts as 

a concise representation of the point set. It only return R as a 

concise representation of a point set to the user, while the 

underlying partitioning P is only used by the DBMS for 

computing such an R internally. Note that the definition 

above can be easily extended to a set of objects of arbitrary 

shapes, rather than just points. In particular, in Section 4, I 

will apply the same notion on a set of rectangles. But for 

now I will focus on point sets. Clearly, for fixed dimensions, 

the amount of bytes required to represent R is only 

determined by its size k. 

Spatial databases have witnessed an increasing number of 

applications recently, partially due to the fast advance in the 

fields of mobile computing and embedded systems and the 

spread of the Internet. For example, it is quite common these 

days that people want to figure out the driving or walking 

directions from their handheld devices (mobile phones or 

PDAs). However, facing the huge amount of spatial data 

collected by various devices, such as sensors and satellites, 

and limited bandwidth and/or computing power of handheld 

devices, how to deliver light but usable results to the clients 

is a very interesting, and of course, challenging task. 

It  present a novel idea that a concise representation of a 

specified size for the range query results, while incurring 

minimal information loss, shall be computed and returned to 

the user. Such a concise range query not only reduces 

communication costs, but also offers better usability to the 

users, providing an opportunity for interactive exploration. 

The usefulness of the concise range queries is confirmed by 

comparing it with other possible alternatives, such as 

sampling and clustering. Unfortunately, I prove that finding 
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the optimal representation with minimum information loss is 

an NP-hard problem. Therefore, I propose several effective 

and nontrivial algorithms to find a good approximate result. 

Extensive experiments on real-world data have 

demonstrated the effectiveness and efficiency of the 

proposed techniques. 

For purpose, light refers to the fact that the representation of 

the query results must be small in size, and it is important 

for three reasons. First of all, the client-server bandwidth is 

often limited. This is especially true for mobile computing 

and embedded systems, which prevents the communication 

of query results with a large size. Moreover, it is equally the 

same for applications with PCs over the Internet. In these 

scenarios, the response time is a very critical factor for 

attracting users to choose the service of a product among 

different alternatives, e.g., Google Map versus MapQuest, 

since long response time may blemish the user experience. 

This is especially important when the query results have 

large scale.  

Second, client’s devices are often limited in both 

computational and memory resources. Large query results 

make it extremely difficult for clients to process, if not 

impossible. This is especially true for mobile computing and 

embedded systems. Third, when the query result size is 

large, it puts a computational and I/O burden on the server. 

The database indexing community has devoted a lot of effort 

in designing various efficient index structures to speed up 

query processing, but the result size imposes an inherent 

lower bound on the query processing cost. If I return a small 

representation of the whole query results, there is also the 

potential of reducing the processing cost on the server and 

getting around this lower bound. 

II. Problem definition 

The purpose of this project deals with the, light refers to the 

fact that the representation of the query results must be 

small in size, and it is important for three reasons. First of 

all, the client-server bandwidth is often limited. This is 

especially true for mobile computing and embedded 

systems, which prevents the communication of query results 

with a large size. Too much information may do more harm 

than good, which is commonly known as the information 

overload problem. The goal of a concise range query is to 

find a concise representation, with the user-specified size, 

for all the points inside the query range. Ideally, one would 

like to have a concise representation of minimum 

information loss. 

III. System Implementation 

Here focusesing on the problem of finding a concise 

representation for a point set P with minimum information 

loss.   In one dimension, a simple dynamic programming 

algorithm finds the optimal solution in polynomial time [3]. 

However, this problem becomes NP-hard in two 

dimensions. Then, I settle for efficient heuristic algorithms 

for two or higher dimensions. The above BFS traversal 

treats all nodes alike in the R-tree and will always stop at a 

single level. But, intuitively, I should go deeper into regions 

that are more “interesting,” i.e., regions deserving more user 

attention.  

These regions should get more budgets from the k bounding 

boxes to be returned to the user. Therefore, I would like a 

quantitative approach to measuring how “interesting” a node 

in the R-tree is, and a corresponding traversal algorithm that 

visits the R-tree adaptively. In the algorithm R-Adaptive [4], 

I start from the root of the R-tree with an initial budget of k, 

and traverse the tree top-down recursively. Suppose I are at 

a node u with budget k, and u has b children u1, . . . ,ub  

those MBRs are either completely or partially inside Q. Let 

the counts associated with them be n1; . . . ; nb. Specifically, 

if  BR(ui) is completely inside Q, I set ni ¼ nui ; if it is 

partially inside, I compute ni proportionally as in  

                                         

n𝑢  .
Area MBR 𝑢  ∩ Q  

Area Q 
 

 

Fig: System Architecture 

IV. Optimal Solution in One Dimension 
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We first give a dynamic programming algorithm for 

computing the optimal concise representation for a set of 

points P lying on a line. Later, in Section 3.3, I will extend it 

to higher dimensions, leading to an efficient heuristic [7]. 

Let p1,,…,pn be the points of P in sorted order. Let  𝑃𝑖,𝑗  

represent the optimal partitioning underlying the best 

concise representation, i.e., with the minimum information 

loss, for the first i points of size 𝑗, 𝑖 ≥ 𝑗 optimal solution is 

simply the concise representation for 𝑃𝑛,𝑘  and 𝑃𝑛,𝑘could be 

found using a dynamic programming approach. The key 

observation is that in one dimension, the optimal 

partitioning always contains segments that do not overlap, 

i.e., I should always create a group with consecutive points 

without any point from another group in-between.  

V. Hardness of the Problem in 2D 

Not surprisingly, like many other clustering problems, for a 

point set P in IR2, the problem of finding a concise 

representation of size k with minimum information loss is 

NP-hard. Also, similar to other clustering problems in 

euclidean space, the NP-hardness proof is quite involved. It  

give a carefully designed construction that gives a reduction 

from PLANAR 3-SAT to the concise representation 

problem. In the classical 3-SAT problem, there are n 

Boolean variables x1; . . . ; xn and m clauses C1; . . . ; Cm, 

where each clause is a disjunction of three variables or their 

negations. The problem is to decide if there exists an 

assignment of variables such that all clauses evaluate to true. 

Assume that I map each variable and each clause to a vertex 

of an undirected graph G. Then, two nodes u and v in graph 

G are connected if and only if u represents a clause that 

contains the variable (or its negation) represented by v. If G 

is planar, the problem is known as PLANAR 3-SAT. It is an 

NP-complete problem [8]. The problem remains NP-

complete even if each variable and its negation appear in at 

most three clauses. Note that in this case, any vertex in G 

has degree at most 3. Given an instance of PLANAR 3-

SAT, I construct a point set P as follows: First, since any 

vertex in G has degree at most 3, I can find a planar 

embedding of G such that all the vertices lie on grid points 

and all the edges follow nonintersecting grid paths. Such an 

embedding can be found in O(n+m) time and the resulting 

embedding has area  𝑂 𝑛 + 𝑚 2 [9].  

VI. Heuristics for Two or More Dimensions 

Given the hardness result, it is very unlikely that it can find 

an optimal concise representation R for a given point set P 

in polynomial time in two or more dimensions. Thus, in this 

section, I try to design efficient heuristic algorithms that 

produce an R with low information loss, although not 

minimum. Since the problem is also a clustering problem, it 

is tempting to use some popular clustering heuristic, such as 

the well-known k-means algorithm, for our problem as well. 

However, since the object function makes a big difference in 

different clustering problems, the heuristics designed for 

other clustering problems do not work for our case. The k-

anonymity problem does share the same object function 

with us, but the clustering constraint there is that each 

cluster has at least k points, while I require that the number 

of clusters is k. These subtle but crucial differences call for 

new heuristics to be tailored just for the concise 

representation problem. 

Given the optimal algorithm in one dimension, a 

straightforward idea is to use a function 𝐼𝑅𝑑 →IR to map the 

points of P from higher dimensions down to one dimension. 

Such an ordering function must somehow preserve the 

proximity relationships among the points. Many techniques 

exist for such a purpose (see [10] for a detailed review), 

among them the space-filling curves [11] have proved to be 

a popular choice. A space-filling curve traverses the space in 

a predetermined order. The most widely used space-filling 

curve is the Hilbert curve. The hth-order Hilbert curve has 

2hd cells in d dimensions and visits all the cells in the 

manner shown in Fig. 5. Each cell will be assigned a Hilbert 

value in sequence starting from 0, and all points falling 

inside the cell will get the same Hilbert value. Our Hilbert-

curve based algorithm, called HGroup, is shown in 

Algorithm 1. The basic idea is to first compute the Hilbert 

value for each point in P, and sort all points by this value, 

mapping them to one dimension 

VII. Algorithm 1: The algorithm HGroup 

Compute the Hilbert value h(𝑝𝑖) for each point 𝑝𝑖є P Sort P 

by h(𝑝𝑖) and map it to one dimension; Find the partitioning 

P using dynamic programming; Build the concise 

representation R for P and return; 

 

Fig: The third-order Hilbert curve in two dimensions 

 



International Journal on Future Revolution in Computer Science & Communication Engineering                                       ISSN: 2454-4248 
Volume: 4 Issue: 11                                                                                                                                                                               01 – 06 

_______________________________________________________________________________________________ 

4 
IJFRCSCE | November 2018, Available @ http://www.ijfrcsce.org                                                                 

_______________________________________________________________________________________ 

VIII. Algorithm 2: Algorithm IGroup 

It presents another, more direct algorithm in two or more 

dimensions. It is an iterative algorithm that finds the k 

groups P1; . . . ; Pk, one at a time.  This algorithm is called 

as I Group. In each iteration, it start with a seed, randomly 

chosen from the remaining points, and greedily add points 

into the group one by one. In the ith iteration, I first 

initialize the group Pi to include only the seed. Let U be the 

set of remaining points. When I stop adding points and 

obtain a Pi, I record that together with it𝑠 𝐿 (𝑝𝑖) achieved in 

the end, and call it a candidate. To improve quality, I carry 

out the same process with a number of different seeds, and 

choose the best candidate that has attained the lowest 𝐿 (𝑝𝑖)  

. Then, I proceed to the next group 𝑃𝑖+1 . Finally, for the last 

group Pk, I simply put all the remaining points into it. I give 

the details of the complete algorithm IGroup in Algorithm 2. 

ALGORITHM 2: I-Group 

U  P; 

S number of seeds to try; 

For i=1,….,k-1 do 

Ĺ𝑏𝑒𝑠𝑡 = ; 

𝑈′ ←U; 

For j=1,…..,s do 

U← 𝑈′ 

𝑝𝑠 ←randomly chosen seed from U; 

𝑃𝑖
′ ← 𝑝𝑠; 

While true do 

Let p=arg𝑚𝑖𝑛𝑝Ĺ(𝑃𝑖
′ ∪{p}); 

If Ĺ(𝑃𝑖
′ ∪{p})< Ĺ(𝑃𝑖

′) then 

𝑃𝑖
′ ← 𝑃𝑖

′ ∪ {𝑝}; 

U U-{p}; 

Else break; 

If Ĺ(𝑃𝑖
′)< Ĺ𝑏𝑒𝑠𝑡  then 

Ĺ𝑏𝑒𝑠𝑡 ← Ĺ (𝑃𝑖
′); 

𝑝𝑖 ← 𝑃𝑖
′; 

U U-𝑝𝑖 ; 

Output 𝑝𝑖 ; 

 

There is k - 1 iterations in the algorithm. In each iteration, it 

check each of the n points and choose the best one to add to 

the current group. In the worst case, I could check all the 

points O(n) times. Each iteration needs to be repeated for s 

times with s randomly chosen seeds. So the worst case 

running time of I-Group is O(𝑠𝑘𝑛)2. 

IX. Query processing with r-trees 

In order to use the algorithms to answer a concise range 

query Q with budget k from the client, the database server 

would first need to evaluate the query as if it were a 

standard range query using some spatial index built on the 

point set P, typically an R-tree. After obtaining the complete 

query results P  𝑄, the server then partitions P  𝑄  into k 

groups and returns the concise representation. However, as 

the main motivation to obtain a concise answer is exactly 

because P  𝑄  is too large, finding the entire P  𝑄 and 

running the algorithms. It presents algorithms that process 

the concise range query without computing P  𝑄 in its 

entirety. The idea is to first find 𝑘1 bounding boxes, for 

some 𝑘1  > k, that collectively contain all the points in P 

 𝑄 by using the existing spatial index structure on P. Each 

of these bounding boxes is also associated with the count of 

points inside. Then, I run a weighted version of the 

algorithm and grouping these 𝑘1  bounding boxes into k 

larger bounding boxes to form the concise representation R. 

Typically 𝑘1 ≪ |P  𝑄 |  , so it could expect significant 

savings in terms of I/O and CPU costs as compared with 

answering the query exactly. Therefore, adopting concise 

range queries instead of the traditional exact range queries 

not only solves the bandwidth and usability problems, but 

also leads to substantial efficiency improvements. 

 

Fig:  R-Tree 

The algorithms presented in this section in general work 

with any space partitioning index structure; for 

concreteness, I will proceed with the R-tree, which is 

arguably the most widely used spatial index structure. The 

R-tree [13] and its variants (R-tree in particular [14]) all 

have the following structure. Suppose the disk block size is 

B. We first group_ B points in proximity area into a 

minimum bounding rectangle (MBR); these points will be 

stored at a leaf on the R-tree. These MBRs are then further 

grouped together level by level until there is only one left. 

Each node u in the R-tree is associated with the MBR 

enclosing all the points stored below, denoted by MBR(u). 

Each internal node also stores the MBRs of all its children. 

An example of the R-tree is illustrated in Fig. 6. Different R-
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tree variants only differ in the rule show the MBRs or points 

are grouped together. The standard range query Q can be 

processed using an R-tree as follows: I start from the root of 

the R-tree, and check the MBR of each of its children. Then, 

I recursively visit any node u whose MBR intersects or falls 

inside Q. When I reach a leaf, I simply return all the points 

stored there that are inside Q. In this section, I in addition 

assume that each node u in the R-tree also keeps nu, the 

number of the points stored below its sub tree. Such counts 

can be easily computed and maintained in the R-tree. 

X. Algorithm R-BFS 

The straightforward way to find k0 such MBRs is to visit the 

part of the R-tree inside Q in a BFS manner, until I reach a 

level where there are at least _k MBRs. I call this algorithm 

R-BFS. In particular, for any node u whose MBR is 

complete inside Q, I directly return MBR(u) together with 

nu. For any node u whose MBR is partially inside Q, I 

return the intersection of the MBR(u) and Q, while the 

associated count is estimated as 

𝑛𝑖 .
Area ( MBR (𝑢 𝑖) ∩𝑄)

𝐴𝑟𝑒𝑎 (𝑄)
 

 assuming uniform distribution of the points in MBR(u). 

XI. Algorithm R-Adaptive 

The BFS traversal treats all nodes alike in the R-tree and 

will always stop at a single level. But, intuitively, it should 

go deeper into regions that are more “interesting,” i.e., 

regions deserving more user attention. These regions should 

get more budget from the k bounding boxes to be returned to 

the user. Therefore, I would like a quantitative approach to 

measuring how “interesting” a node in the R-tree is, and a 

corresponding traversal algorithm that visits the R-tree 

adaptively. 

In the algorithm R-Adaptive, I start from the root of the R-

tree with an initial budget of k=αk, and traverse the tree top-

down recursively. Suppose I am at a node u with budget k, 

and u has b children u1; . . . ; ub whose MBRs are either 

completely or partially inside Q. Let the counts associated 

with them be n1; . . . ; nb. Specifically, if MBR(ui) is 

completely inside Q, I set 𝑛𝑖 = 𝑛𝑢  ; if it is partially inside, I 

compute ni proportionally as in (4). 

ALGORITHM 3: Recursive call visit(u,k) 

Let  𝑢1,……, 𝑢𝑏       be u’s chidren whose 

MBRs are inside or partially inside Q; 

Let    𝑛𝑖   =number of points inside MBR(𝑢𝑖  

)∩ 𝑄; 

If b>=k then 

Output MBR(𝑢𝑖) ∩ 𝑄   with  𝑛𝑖   for all I; 

Return; 

Let  𝐴𝑖  =Area( MBR(𝑢𝑖)  ∩ 𝑄); 

Compute 𝑘𝑖    as in  for all i=1,……,b; 

For i=1,…..,b do 

If    𝑘𝑖     =1 then 

Output MBR(𝑢𝑖)  ∩ 𝑄   with 𝑛𝑖  

Else 

Visit(𝑢𝑖 , 𝑘𝑖); 

 

 

XII. Performance Analysis 

Input data  

Spatial databases have witnessed an increasing number of 

applications recently, partially due to the fast advance in the 

fields of mobile computing and embedded systems and the 

spread of the Internet. For example, it is quite common these 

days that people want to figure out the driving or walking 

directions from their handheld devices (mobile phones or 

PDAs). However, facing the huge amount of spatial data 

collected by various devices, such as sensors and satellites, 

and limited bandwidth and/or computing power of handheld 

devices, how to deliver light but usable results to the clients 

is a very interesting, and of course, challenging task. 

Collected spatial data are provided as an input. 

Performance is measured in terms of the output provided by 

the application. Requirement specification plays an 

important part in the analysis of a system. Only when the 

requirement specifications are properly given, it is possible 

to design a system, which will fit into required environment. 

It rests largely with the users of the existing system to give 

the requirement specifications because they are the people 

who finally use the system.  This is because the 

requirements have to be known during the initial stages so 

that the system can be designed according to those 

requirements.  It is very difficult to change the system once 

it has been designed and on the other hand designing a 

system, which does not cater to the requirements of the user, 

is of no use. 

XIII. Result Analysis 

This paper implemented two base algorithms, HGroup and 

IGroup, as well as the two R-tree traversal algorithms RBFS 

and R-Adaptive. Specifically, I used the R*-tree [14] to 

index all the points in the data set. The IGroup algorithms 

first traverse the R-tree to produce a number of MBRs and 

feed them into the base algorithms, so I have, in total, two 

combinations: R-BFS + IGroup, R-BFS + HGroup, R-

Adaptive + IGroup, and R-Adaptive + HGroup. The straw-

men I compare against are the k-means clustering algorithm 

and the MinSkew histogram [15]. In particular, for k-means 

and MinSkew, I first obtain all the data points in the query 

region via R-tree, and then conduct either of the two 

methods to obtain clusters/partitions. 
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It first did some test queries to see if the concise 

representation indeed gives the user some intuitive high 

level ideas about the query results. The resulting concise 

representations can be overlapping with each other. 

However, this is usually not a problem for the user 

perception, as long as I render the higher density rectangles 

in front of the lower density ones. the average information 

loss per point in the concise representations returned, where 

I observe the following. First, the two IGroup-based variants 

produce much better results than the two HGroup-based 

variants. The explanation is possibly that, since the Hilbert 

curve imposes a linear order on the 2D data set, some 

important geometric properties are lost. While Hilbert-

curve-based clustering algorithms [12] generally work well, 

our problem is fundamentally different from traditional 

clustering problems. Thus, simply extending the 1D 

dynamic programming algorithm to two dimensions by 

Hilbert curves does not work as well as IGroup, which is 

directly designed for two dimensions. Second, coupled with 

the same grouping algorithm, R-Adaptive works much 

better than R-BFS. This means that visiting the R-tree more 

selectively does not only save the traversal cost, but also 

leads to better quality of the results. In addition, I observe 

that larger ks improve the quality for all the algorithms. This 

is intuitive, since as the size of the concise representation 

increases, it becomes closer and closer to the exact results. 

XIV. Conclusion 

A new concept that of concise range queries has been 

proposed in this paper, which simultaneously addresses the 

following three problems of traditional range queries. First, 

it reduces the query result size significantly as required by 

the user. The reduced size saves communication bandwidth 

and also the client’s memory and computational resources, 

which are of highest importance for mobile devices. Second, 

although the query size has been reduced, the usability of 

the query results has been actually improved. The concise 

representation of the results often gives the user more 

intuitive ideas and enables interactive exploration of the 

spatial database. Finally, I have designed R-tree-based 

algorithms so that a concise range query can be processed 

much more efficiently than evaluating the query exactly, 

especially in terms of I/O cost. This concept, together with 

its associated techniques presented here, could greatly 

enhance user experience of spatial databases, especially on 

mobile devices, by summarizing “the world in a nutshell.” 

XV. Future Work 

The basic idea of representing range queries in a concise 

format .However, the only technical contents in are the basic 

1D dynamic programming algorithm and the HGroup 

algorithm. The NP-hardness result for two dimensions, the 

IGroup algorithm, the R-tree-based algorithms, the 

extensions, as well as the experiments, are all new in this 

paper. 
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