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Abstract— In this paper a parallel algorithm for Jacket transform is proposed in multi mesh architecture having n4 processing elements. Multi 

mesh architecture is formed by collection of meshes having n × n structure.  These meshes are arranged in n rows and n columns. In this paper, 

in place generation of the Jacket matrix elements in multi mesh of size n4 processors has been presented, which is then followed by an algorithm 

for the Jacket transformation. This parallel algorithm for Jacket transformation of vector of length N has been proposed with O (log √N)) 

addition time and O (√N) data movement time. 
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I.  INTRODUCTION  

The Hadamard matrix and its generalizations are orthogonal 
matrices [1], [2] with many applications in signal

 
processing, 

data processing, CDMA multiplexing, CDMA de-multiplexing, 
cryptography etc. The Jacket matrix motivated by the center 
weighted Hadamard matrix with an inverse constraint is a 
special matrix with its inverse matrix being determined by the 
element wise inverse of the matrix. In particular, several 
interesting matrices, such as the Hadamard matrix, the Fourier 
matrix, and the slanted matrix, belong to the Jacket matrix 
family [4]. In addition, the Jacket matrix is related to many 
useful matrices, such as, the unitary matrix and the Hermitian 
matrix, that can be potentially applied in signal processing, data 
compression, cryptography, orthogonal code design and so on 
[7]. 

A Jacket matrix is a square matrix J = [jrs] of order n, whose 
entries are non-zero and may have values real, complex or from 
a finite field. Moreover, JK = KJ = In where In is identity matrix 
of order n and K = (jrs

-1
)
T 

/n, T stands for  transpose and K is the 
inverse matrix of J. If the transform of the matrix a acted on J 
is defined by A, then A = aJ.  

In this paper, in place generation of the Jacket matrix 
elements in multi mesh of size n

4
 processors has been 

presented, which is then followed by an algorithm for the 
Jacket transformation. 

 

II. CENTER WEIGHTED HADAMARD TRANSFORM AND 

JACKET TRANSFORM 

The center weighted Hadamard transform (CWHT) [3]-[6], 
like Hadamard transform, requires only real operations. The 
CWHT weights the region of mid-spatial frequencies of the 
signal where as no such option is available in Hadamard 
transform (HT). The higher order CWHT can be formed from 
the lower order CWHT using Kronecker product of 
fundamental Hadamard matrices with lower order CWHT. 

 
Definition 1 (Kronecker product): Let matrix  𝑃 = (𝑝 i , j) m 

× n  be of size m × n  and matrix 𝑄 = (𝑞s , t) k × l  of size m × n, 
respectively. The Kronecker product of P and Q, which is 
denoted by P ⊗ Q is a matrix of size mk × nl, i.e.,  

 

𝑃 ⊗ 𝑄 =  

𝑝1,1  𝑄 ⋯ 𝑝1,n   𝑄 

⋮ ⋱ ⋮
𝑝m ,1  𝑄 ⋯ 𝑝m,n   𝑄 

  

 
The centre weighted Hadamard matrix is a typical case of 

the Jacket matrix whose inverse matrix is achieved from the 
element wise inverse of the initial matrix [4]. 

 
Definition 2 (Jacket matrix): Let a square matrix of size N 

× N be denoted by JN  = (𝑗 s , t) N× N . The matrix JN is a Jacket 
matrix if its inverse matrix can be simply obtained by its 
element-wise inverse, i.e., for 1 ≤ s, t ≤ N, we obtain 

 

  J 
-1

N  = 
1

𝑐
 (1/ (𝑗s , t )

 T
 N × N) 

 
where, c is a normalized constant such that  J 

-1
N  JN  = JN J 

-

1
N  = I N and the superscript T denotes the matrix transposition 

operation.  In detail, we have, 
 

JN  =  

𝑗1,1             𝑗1,2         ⋯ 𝑗1,𝑁   

⋮ ⋮ ⋮
𝑗𝑁,1           𝑗𝑁,2        ⋯ 𝑗𝑁,𝑁    

 , 

and its inverse is given by 
 

     𝐽𝑁
−1      =   

1

𝑁
 

𝑗−1
1,1            𝑗−1

2,1         ⋯ 𝑗−1
𝑁,1

  

⋮ ⋮ ⋮
𝑗−1

1,𝑁           𝑗−1
2,𝑁        ⋯ 𝑗−1

𝑁,𝑁   
  

 
Jacket matrix has the property of the conventional Jacket, 

where the observed and reverse are more likely to be similar in 
appearance. Currently, the fractional Jacket transform (FRJT) 
has been applied in a wide range of subjects. FRJM is a 
generalized Jacket matrix with an inverse constraint [8]. The 
Hadamard and center weighted Hadamard matrices of order N 
= 2

k
 is denoted as [H]N and [CWH]N. The lowest order center 

weighted Hadamard matrix of size (4 × 4) is defined as 
follows: 
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[CWH]4   =    

1    1    1    1
1 −2    2 −1
1    2 −2 −1
1 −1 −1    1

   

 
A recursive definition is given below for the generation of 

higher order center weighted Hadamard matrix from the lower 
order center weighted Hadamard matrix. 

 
 [CWH]N = [CWH]N/2 ⊗ [H]2 

 
 
where ⊗ is the Kronecker product and [H]2  is the lowest 

order Hadamard matrix as given below. 
 

[H]2 =  
1    1
1 −1

  

Considering N = 8, we can deduce the following 
 
[CWH]8 = [CWH]4 ⊗ [H]2 

 

=    

1    1    1    1
1 −2    2 −1
1    2 −2 −1
1 −1 −1    1

  ⊗   [H]2 

 

  =    

𝐻2   𝐻2    𝐻2    𝐻2
𝐻2 −2𝐻2    2𝐻2 −𝐻2
𝐻2    2𝐻2 −2𝐻2 −𝐻2
𝐻2 −𝐻2 −𝐻2    𝐻2

  

 
 
Now, a generalized 4 × 4 Jacket matrix can be represented 

as,  

[ J] 4 =   

𝑎    𝑏    𝑏    𝑎
𝑏 −𝑐    𝑐 −𝑏
𝑏    𝑐 −𝑐 −𝑏
𝑎 −𝑏 −𝑏    𝑎

  

 
where a, b, c denote the weighted factors. This matrix is 

weighted in the centre by 

 
−𝑐 𝑐
  𝑐 −𝑐

  

If a = b = 1 and c =  𝜔 (the weight), the above matrix 
reduces to 

[J] 4 =  

1    1    1    1
1 −𝜔    𝜔 −1
1    𝜔 −𝜔 −1
1 −1 −1    1

  

 
The CWHT is obtained by weighting the centre portion of 

the transform matrix. For N = 2
r
, the transformed vector A is 

represented as 
Aj=  
 

  −1 <𝑗 ,𝑖> 𝜔   𝑖𝑟−1⊕𝑖𝑟−2⊕… ⊕𝑖0  𝑗𝑟−1  ⊕ 𝑗𝑟−2  ⊕… ⊕𝑗0 𝑎𝑖
𝑁−1
𝑖=0  , 

 j = 0,1, 2, … , n-1                                                 (1)  
 

Here, i and j denote the row and column positions in the 
above matrix J, ω is any real number and it  is the weight.  <j, 
i> = 𝑗𝑟−1𝑖𝑟−1⨁𝑗𝑟−2𝑖𝑟−2 ⊕… ⊕ 𝑗0𝑖0  ,   where ⊕  is used to 
identify modulo two addition. 

 
Example 1: Generation of the elements of the above 

matrix. Here, n = 4 = 2
r 
and r = 2. 

 
Now, < j, i > = 𝑗1𝑖1 ⊕ 𝑗0𝑖0 
 
For, i = 0 = (00)2, j =0 = (00)2,    < 0, 0> =   0 ⊕ 0 = 0. 
 
The value of the element at position (0, 0) of the Jacket  
matrix  

=  −1 <0,0>𝜔 𝑖1  ⊕𝑖0  𝑗1  ⊕𝑗0 =   −1 0𝜔 0 ⊕0  0 ⊕0 = 1.  
 
In the same way, when i = 2 = (10)2,  j = 2 = (10)2, 
< 2, 2 > =1 ⊕ 0 = 1, and the value at position (2, 2) of the                

 Jacket matrix=  −1 <2,2>𝜔 𝑖1  ⊕𝑖0  𝑗1  ⊕𝑗0 =
  −1 1𝜔 1 ⊕0  1 ⊕0 =  − 𝜔. 

 

III. THE MULTI MESH (MM) NETWORK 

The Multi-Mesh network that was proposed by the authors 
in [10] is made up of n

2 
meshes shown in Fig. 1. In an n × n 

mesh, the processors are arranged in n rows and n columns. 
Such a mesh is used as the basic building block of the Multi-
Mesh (MM) network. Here total n

2
 such meshes are arranged in 

the form of an n × n matrix where each constituent matrix is 
termed as a block in MM network. In each block there are 4(n-
2) processors on the four outer boundaries each of which has 
three neighbours within that block.  These are called boundary 
processors. Also, in each block there are four corner processors 
each of which has two neighbours within that block. These are 
called corner processors. The rest of the (n-2)

2
 processors in 

every block will be termed as internal processors. Each block in 
this network is connected to another block by suitable links so 
that each processor has four links in this network topology. 

 
A processor inside a given block can be uniquely identified 

by two coordinates.  Again blocks are organized as matrix form 
so each block can be identified by two coordinates, say α and β 
as B(α, β). Thus, each of the n

4
 processors in MM can uniquely 

be identified using a 4-tuple of the coordinate values. The first 
two coordinates are used to describe the block in which the 
processor lies and the other two coordinates are used to identify 
the position of the processor inside that particular block. For 
example, P (α, β, x, y) is a processor lying at the x-th row and y-
th column of the block B (α, β).Each of these four coordinates 
has value between 0 to n-1. A special symbol * will be used for 
any one of these four coordinates to denote the set of all 
processors with all possible values of the respective 
coordinates. For example, P (*, *, 0, 0) signifies the set of the 
top left corner processors of all the n

2
 blocks. If the processors 

P(α, β1, x1, y1) are connected to P (α, β2, x2,  y2) for all values of 
α, 0 ≤ α  ≤ n-1, we denote these sets of links by an 
interconnection between the sets P (*, β1, x1, y1) and P (*, β2, 
x2, y2). Inter-block connections among the boundary processors 
are given by the following rules: 

 
Vertical Connection is identified by following rule 
∀ β, 0 ≤ β ≤ n-1, P (α, β, 0, y) are connected to P (y, β, n-1, 

α), where 0 ≤ y, α ≤ n-1, and   
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Horizontal Connection is identified by following rule 
∀ α, 0 ≤ α ≤ n-1, P (α, β, x, 0) are connected to P (α, x, β, n-

1), where 0 ≤  x , β  ≤ n-1 
 
All these links are two-way connections. Hence, in the 

multi-mesh network, all processors have a uniform degree of 4. 
These inter-block connections among the boundary processors 
are called inter-block links. 

 

 
Figure 1.  A simple n × n Multi-Mesh network with n = 4 (all links are not 

shown). 

In a simple n  n mesh only (n – 2)
2
 internal processors 

have degree four, the four corner processors are of degree two 
and 4(n – 2) boundary  processors have degree three, as 
opposed to degree four for all processors on the Multi-mesh. 
Moreover, the diameter of the network is 2n as opposed to 2(n

2 

-1) for an n
2
 × n

2 
mesh.

 
For this reason, any real-life 

applications can be solved on the proposed network more 
efficiently than on the corresponding mesh with the same 
number of processors. When time complexity is governed by 
the diameter of the network, the MM network is more 
advantageous than mesh. As examples of real-life applications, 
simple problems like those of calculating the sum, average, 
minimum, maximum of n

4
 data values with O(n) time on the 

MM network having n
4
 processors have been implemented in 

[10]. For non-trivial problems like sorting of n
4
 data values, 

Discrete Fourier Transform (DFT) and Hadamard 
Transformation have also been implemented in O (n) time [11], 
[12]. [13]. In the case of simple n

2 
× n

2
 mesh each of these 

problems takes O (n
2
) time. The reduced time complexity has 

been achieved due to the inter block links among the boundary 
processors of the meshes as defined by the above two rules. 

 

IV. IN-PLACE GENERATION OF JACKET MATRIX ELEMENTS 

IN MULTI MESH 

For a two-dimensional mesh the element (i, j) of Jacket 
matrix is generated using the equation  

 

 −1  𝑏𝑖𝑛   𝑖 .  𝑏𝑖𝑛   𝑗    𝜔  𝑖𝑟−1⊕𝑖𝑟−2⊕… ⊕𝑖0  𝑗𝑟−1  ⊕ 𝑗𝑟−2⊕… ⊕𝑗0   
 
In case of multi mesh of size n × n with each of the block 

having n × n elements, the Jacket elements of a Jacket matrix of 
size n

2
 × n

2
 can be generated based on the position of the 

processor element in the multi mesh. Since, the position of an 

element in multi mesh involves four parameters α, β, x and y, a 
Jacket element at (α, β, x, y) can be generated as given below. 

 
P (α, β, x, y) =  
 

 −1  bin   𝛼  ∘ bin   𝑥  . bin   𝛽  ∘ bin   𝑦  𝜔 𝑋𝑟−1⨁X𝑟−2  … ⨁𝑋0  𝑌𝑟−1 ⊕𝑌𝑟−2… ⨁𝑌0    
 
            (2) 
where X = x + α n and Y = y + β n and binary representation 

of X and Y are 𝑋r−1 Xr−2… X0 and 𝑌r−1 Yr−2…Y0 respectively. 
 
Here, bin (α), bin (β), bin (x) and bin (y), stands for binary 

representation of α, β, x and y respectively.  “∘” is used to 
denote concatenation and “.” stands for dot product of the 
binary numbers. 

In the above equation x and y are the row and column in 
each of the block matrix in multi mesh and 0 ≤ x, y ≤ n-1 
whereas 0 ≤ X, Y ≤ n

2
 -1, n

2 
= 2

r 
and N = n

4
. 

 
Example 2: If n = 4 and α = 2, β = 3, x = 3, y = 0 

 
𝑃 2, 3, 3, 0 

=  −1  𝑏𝑖𝑛  2  ∘ 𝑏𝑖𝑛 (3)  𝑏𝑖𝑛  3 ∘ 𝑏𝑖𝑛 (0) 𝜔 𝑋3 ⨁𝑋2  ⨁X1 ⨁X0  𝑌3⨁𝑌2⨁𝑌1⨁𝑌0    
 

=   −1  1011 ∘ 1100  𝜔 1⨁0 ⨁1⨁1  1⨁1⨁ 0 ⨁0  

=  −1  1.1 + 0.1 + 1.0 + 1.0  
=  −1  
 

Similarly, P (3, 3, 3, 3)  = 1.𝜔 1⨁1⨁1⨁1  1⨁1⨁1⨁1 =
1.𝜔0 = 1 

 
In binary number system, number of bits required to 

represent each α, β, x, y is same and depends on the value of n. 
If n × n mesh is used as a building block to form MM, the bit 
required will be log2 n. 

 

V. JACKET TRANSFORMATION BY MATRIX VECTOR 

MULTIPLICATION 

For Jacket matrix elements are generated in place using the 
formula described in section 4. Now, this 2

m
 × 2

m
 Jacket matrix 

(Jm) is being used for the Jacket transformation of an input real 
vector a = (a0, a1,..., an-1) of length n = 2

r
.  The transformed 

vector A = (A0, A1… An-1) is expressed as, 
 

 

𝐴0

𝐴1

⋮
𝐴𝑛−1

  = [Jm]              

𝑎0

𝑎1

⋮
𝑎𝑛−1

  

VI.  PARALLEL IMPLEMENTATION OF JACKET 

TRANSFORMATION 

 
Parallel implementation of Jacket transformation will now 

be described using an MM network to achieve the O (n) time 
complexity. 

 
After the in place generation of matrix elements in all the 

nodes/processing elements of multi mesh network, the next 
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step is to input the vector a of length n to the multi mesh 
through upper boundary of the MM network and propagate to 
other processors of the network as shown in Fig. 2. Only first 
four components of vector a are shown in this figure as only 
the first column of the MM network is shown for the data 
movement. Vector a is propagated along intra block links as 
well as inter block links as shown in Fig. 2. Next step is to 
perform the matrix multiplication of vector a and the Jacket 
matrix elements those already have been generated in place as 
per the equation (2) given above. An element of transformed 
vector can be expressed as ci j = [Jm]i j × aj. To get the 

transformed vector it is required to perform 𝐴𝑖  =   𝑐𝑖𝑗
𝑛2−1
𝑗=0  

for each i, where, all cij„s are to be brought in a single block M 
(i/n, i%n), as they are now scattered in i

th
 rows of n different 

blocks. To bring the related elements in a single block n left 
shifts are performed along horizontal inter block links of the 
MM as shown in Fig. 3. 

 

 
 

 
Figure 2.  Data movement of vector a in blocks M (*, 0) of a 4 × 4 MM. (a) 

Input of vector a is done through the upper boundary of the block M (0, 0) (b) 

a  values are moved vertically to other blocks by vertical inter block links (c) a 

values are moved horizontally  in the last row of each block in  parallel (d) a 
values at the last row of each block are moved vertically through vertical inter 

block links (e) a values are propagated along column  direction in each block 

in parallel 

 
Figure 3.  Contents of blocks M (0, *) after n (=4) steps data movement along 

the horizontal inters block links in a 4 ×4 MM 

 
Now each of the blocks in multi mesh contains n

2
 values 

which are summed along column wise followed by row wise at 
the first row of each mesh in parallel as shown in Fig. 4. After 
this a single step of horizontal data movement along the 
horizontal inter block links is done in parallel for all meshes in 
parallel. This horizontal data movement along inter block links 
bring all the values of MM at the left boundary of it as shown 
in Fig. 5 (only a single row of meshes is shown in the figure). 

 

 
Figure 4.   Column sum followed by summation in 0th row of each block in 

MM for n = 4 
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Figure 5.  Single step data movement along horizontal inter block link in MM 

for n = 4 

VII. PARALLEL JACKET TRANSFORM USING MM NETWORK 

 

A. Algorithm PJT 

 

1. Initialization step: Two separate registers say R1 and 

R2 are being used for each processor in MM and both 

are initialized in this step by initializing R1 by the 

values of Jm, Jacket Matrix, by in place generation of 

the Jacket matrix elements based on the position of the 

processor in MM following the formula given in 

equation (2) and the vector to be transformed i.e. the 

vector a is pushed through the upper boundary of the 

MM network in the R2 registers and moved 

accordingly. 

Step 1: ∀  α, β, x and y, 0 ≤ α, β, x, y ≤ n-1 do in 

parallel 

 

R1 (α, β, x, y) ← 

 −1  𝑏𝑖𝑛   𝛼  ∘ 𝑏𝑖𝑛   𝑥  . 𝑏𝑖𝑛   𝛽  ∘ 𝑏𝑖𝑛   𝑦𝑥   𝜔 𝑋𝑟−1⨁𝑋𝑟−2  𝑌𝑟−1 ⊕𝑌𝑟−2 

where, X = x + α n and Y = y + β n  

In the above equation x and y are the row and column 

in each of the block matrix in multi mesh and 0 ≤ x, y 

≤ n-1 whereas 0 ≤ X, Y ≤ n
2
 -1, n

2
 = 2

r
 and N = n

4
.  

 

Step 2: ∀  β and y, 0 ≤ α, β, y ≤ n-1 do in parallel 

 

R2 (0, β, 0, y)    ←  𝑎𝛽𝑛+𝑦  

2. Propagation of Vector a in MM network: 

I. ∀ β and y, 0 ≤ β, y ≤ n-1 do in parallel 

R2 (y, β, n-1, 0) ← R2 (0, β, 0, y); 

II. ∀ α, β, 0 ≤ α, β ≤ n-1 do in parallel 

for i = 1 to n-1 do 

R2 (α, β, n-1, i) ←    R2 (α, β, n-1, i-1); 

 

III. ∀ α, β, i, 0 ≤ α, β, i ≤ n-1 do in parallel 

 

R2 (i, β, 0, α) ← R2 (α, β, n-1, i); 

 

IV. ∀ α, β, j, 0 ≤ α, β , j  ≤ n-1 do in parallel 

for i = 1 to n-1 do 

 R2 (α, β, i, j) ← R2 (α, β, i-1, j); 

3. Generation of partial product in register R1 for each 

block in parallel: 

∀ α,  β, x and y, 0 ≤ α, β, x, y  ≤  n-1  do in parallel 

R1 (α, β, x, y) ← R1 (α, β, x, y) × R2 (α, β, x, 

y); 

4. Data Movement along horizontal inter block links:  

Horizontal inter block link in MM forms cycle of 

length 2n between the r
th 

row of the block M (p, q) 

and the q
th

 row of the block M (p, r) for q ≠ r, 0 ≤ p ≤ 

n-1. For a given α, if data elements in M ( α, *) are 

shifted through n positions along the horizontal 

cycles, then the p
th

 row elements of M ( α, q) will also 

be shifted to the q
th

 row of M ( α, p), 0 ≤  α  ≤  n-1. 

/* Here, `*‟ indicates all possible values from 0 to 

n-1, but the same value for it must be used on both 

sides of the assignment operator */ 

∀ α and  β, 0 ≤ α, β  ≤  n-1  do in parallel 

begin 

I. R1(α, β,*, n-1)  ←  R1(α,*, β, 0); 

II. for  j = n-1 down to 1 do in parallel 

 R1 (α, β,*, j-1)   ←   R1 (α, β, *, j); 

endfor 

end 

/* Steps I and II are in parallel */ 

5. Addition step at each block of MM in parallel:  

 

∀ α, β, y 0 ≤ α, β, y  ≤  n-1  do in parallel 

/* Sum along each column in each mesh */ 
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begin 

for j = 0 to (log2 n - 1) 

begin 

     for i = 0 to (n - 1) in step (2 
j+1

)  do 

 R1 (α, β, i, y)   ← R1 (α, β, i, y) + R1 (α, β, i  

  + 2
j
, y) 

 end 

end 

/* Registers R1 of processors P (α, β, 0, i) contain the column 

sums for ∀ α, β, i, 0 ≤ α, β, i ≤ n-1 */ 

 

∀ α , β, 0 ≤ α, β  ≤  n-1  do in parallel 

/* Summing along the 0
th

 row in each block*/ 

 

begin 

 

k = 0; 

for j = 0 to (log2 n - 1) 

begin 

     for i = k to (n - 1) in step (2 
j+1

)  do 

 R1 (α, β, 0, i + 2
j
) ← R1 (α, β, 0, i) + R1 (α, β, 0, i + 

 2
j
); 

 k = k + 2
j
; 

  end 

end 

 

/* The sum of n
2 

data values of the block is finally brought to 

the register R1 of processor P (α, β, 0, n-1) */  

 

6. Data movement for the final output vector from MM:  

 

The output vector or the transformed vector C is moved to the 

0th column of all the blocks M (α, 0), 0 ≤ α ≤ n-1. 

 

∀ α and  β , 0 ≤ α, β  ≤  n-1  do in parallel 

 

 R1 (α, 0, β, 0) ← R1 (α, β, 0, n-1); 

/* It is a single step horizontal data movement along inter 

block links */ 

 

B. Simulation of the algorithm PHT 

 
Simulation program of the parallel algorithm PHT is done 

using GCC Open MPI library. The resultant transformed output 
vector for a given input vector was verified with a serial Jacket 
transformation algorithm. 
 

VIII. TIME COMPLEXITY OF PARALLEL JACKET 

TRANSFORMATION 

 
 Constant time say t1 is required for initialization. 

Propagation of vector B requires 2n steps of data movements in 
stage 2. Generation of partial products needs constant time t2 in 
stage 3. Data movements in stage 4 require n steps. Stage 5 
requires 2(n-1) data movement steps and 2 log2 n addition 
steps. Data arrangement i.e. stage 6 is done in single step. So, 
total number of steps required for the entire process is t1 + t2 + 
5n + 2 log2 n, where t1 is constant time for in place generation 
of Jacket matrix elements in parallel, t2 is constant time for 
generation of partial products in parallel, steps required for data 
movement is 5n and 2 log2 n is the number of addition steps. 
So, total time required is t1 + t2 + 5n + 2log2 n = 5N

1/2
 + t + 

2log2 N
1/2

 where N
2
 = n

4
, t = t1 + t2 and t > 0, which implies 

time complexity of this algorithm is O (n) or O (N
1/2

). 
 

IX. TIME COMPLEXITY OF PARALLEL JACKET 

TRANSFORMATION 

 

 
A parallel algorithm for Jacket transformation of vector of 

length N has been proposed with O (log √N)) addition time and 
O (√N) data movement time. Each processor of the MM 
network, having N

2
 processors, generates a single component 

of the Jacket matrix element depending on the processor 
position in MM network i.e. each of the components is 
generated in place. The proposed algorithm has suggested an 
implementation of the Jacket Transform in a new parallel 
architecture which is of lower diameter, lower degree and 
regular interconnections. 

 
Moreover, the MM network is more advantageous than 

mesh of same size for implementation of Jacket Transform. In 
case of simple n2 × n2 mesh this problem would have taken O 
(n2) time. The reduced time complexity has been achieved due 
to the inter block links among the boundary processors of the 
meshes. 

 
The proposed algorithm can be modified to calculate the 

scaled up version of the problem. In the present paper Jacket 
matrix of size 2

4
 × 2

4
 has been used in the example to execute 

the proposed algorithm which can be suitably modified to 
compute Jacket matrix of size 2

4+1 
× 2

4+1
 to transform the input 

vector of size 2
4+1

 using the same number of processors. In the 
later case each processor has to compute four partial products 
resulting in increase of time complexity by a constant. 
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