
International Journal on Future Revolution in Computer Science & Communication Engineering ISSN: 2454-4248
Volume: 4 Issue: 9 103 – 109

103

IJFRCSCE | September 2018, Available @ http://www.ijfrcsce.org

Parallel Jacket Transformation in Multi-Mesh Network

Amit Datta

Department of Engineering & Technological Studies,

University of Kalyani

Kalyani,West Bengal 741235

Kalyani, India

e-mail: amitdatta_wb@yahoo.co.in

Mallika De

Dr. Sudhir Chandra Sur Degree Engineering College

540, Dum Dum Road, Kolkata, West Bengal 700074

Kolkata, India

e-mail: demallika@yahoo.com

Abstract— In this paper a parallel algorithm for Jacket transform is proposed in multi mesh architecture having n4 processing elements. Multi

mesh architecture is formed by collection of meshes having n × n structure. These meshes are arranged in n rows and n columns. In this paper,

in place generation of the Jacket matrix elements in multi mesh of size n4 processors has been presented, which is then followed by an algorithm

for the Jacket transformation. This parallel algorithm for Jacket transformation of vector of length N has been proposed with O (log √N))

addition time and O (√N) data movement time.

Keywords-Jacket Matrix, Jacket Transformation, Multi-Mesh, 2D Mesh, Hadamard Transformation

__*****___

I. INTRODUCTION

The Hadamard matrix and its generalizations are orthogonal
matrices [1], [2] with many applications in signal

processing,

data processing, CDMA multiplexing, CDMA de-multiplexing,
cryptography etc. The Jacket matrix motivated by the center
weighted Hadamard matrix with an inverse constraint is a
special matrix with its inverse matrix being determined by the
element wise inverse of the matrix. In particular, several
interesting matrices, such as the Hadamard matrix, the Fourier
matrix, and the slanted matrix, belong to the Jacket matrix
family [4]. In addition, the Jacket matrix is related to many
useful matrices, such as, the unitary matrix and the Hermitian
matrix, that can be potentially applied in signal processing, data
compression, cryptography, orthogonal code design and so on
[7].

A Jacket matrix is a square matrix J = [jrs] of order n, whose
entries are non-zero and may have values real, complex or from
a finite field. Moreover, JK = KJ = In where In is identity matrix
of order n and K = (jrs

-1
)
T

/n, T stands for transpose and K is the
inverse matrix of J. If the transform of the matrix a acted on J
is defined by A, then A = aJ.

In this paper, in place generation of the Jacket matrix
elements in multi mesh of size n

4
 processors has been

presented, which is then followed by an algorithm for the
Jacket transformation.

II. CENTER WEIGHTED HADAMARD TRANSFORM AND

JACKET TRANSFORM

The center weighted Hadamard transform (CWHT) [3]-[6],
like Hadamard transform, requires only real operations. The
CWHT weights the region of mid-spatial frequencies of the
signal where as no such option is available in Hadamard
transform (HT). The higher order CWHT can be formed from
the lower order CWHT using Kronecker product of
fundamental Hadamard matrices with lower order CWHT.

Definition 1 (Kronecker product): Let matrix 𝑃 = (𝑝 i , j) m

× n be of size m × n and matrix 𝑄 = (𝑞s , t) k × l of size m × n,
respectively. The Kronecker product of P and Q, which is
denoted by P ⊗ Q is a matrix of size mk × nl, i.e.,

𝑃 ⊗ 𝑄 =

𝑝1,1 𝑄 ⋯ 𝑝1,n 𝑄

⋮ ⋱ ⋮
𝑝m ,1 𝑄 ⋯ 𝑝m,n 𝑄

The centre weighted Hadamard matrix is a typical case of

the Jacket matrix whose inverse matrix is achieved from the
element wise inverse of the initial matrix [4].

Definition 2 (Jacket matrix): Let a square matrix of size N

× N be denoted by JN = (𝑗 s , t) N× N . The matrix JN is a Jacket
matrix if its inverse matrix can be simply obtained by its
element-wise inverse, i.e., for 1 ≤ s, t ≤ N, we obtain

 J
-1

N =
1

𝑐
 (1/ (𝑗s , t)

 T
 N × N)

where, c is a normalized constant such that J

-1
N JN = JN J

-

1
N = I N and the superscript T denotes the matrix transposition

operation. In detail, we have,

JN =

𝑗1,1 𝑗1,2 ⋯ 𝑗1,𝑁

⋮ ⋮ ⋮
𝑗𝑁,1 𝑗𝑁,2 ⋯ 𝑗𝑁,𝑁

 ,

and its inverse is given by

 𝐽𝑁
−1 =

1

𝑁

𝑗−1
1,1 𝑗−1

2,1 ⋯ 𝑗−1
𝑁,1

⋮ ⋮ ⋮
𝑗−1

1,𝑁 𝑗−1
2,𝑁 ⋯ 𝑗−1

𝑁,𝑁

Jacket matrix has the property of the conventional Jacket,

where the observed and reverse are more likely to be similar in
appearance. Currently, the fractional Jacket transform (FRJT)
has been applied in a wide range of subjects. FRJM is a
generalized Jacket matrix with an inverse constraint [8]. The
Hadamard and center weighted Hadamard matrices of order N
= 2

k
 is denoted as [H]N and [CWH]N. The lowest order center

weighted Hadamard matrix of size (4 × 4) is defined as
follows:

International Journal on Future Revolution in Computer Science & Communication Engineering ISSN: 2454-4248
Volume: 4 Issue: 9 103 – 109

104

IJFRCSCE | September 2018, Available @ http://www.ijfrcsce.org

[CWH]4 =

1 1 1 1
1 −2 2 −1
1 2 −2 −1
1 −1 −1 1

A recursive definition is given below for the generation of

higher order center weighted Hadamard matrix from the lower
order center weighted Hadamard matrix.

 [CWH]N = [CWH]N/2 ⊗ [H]2

where ⊗ is the Kronecker product and [H]2 is the lowest

order Hadamard matrix as given below.

[H]2 =
1 1
1 −1

Considering N = 8, we can deduce the following

[CWH]8 = [CWH]4 ⊗ [H]2

=

1 1 1 1
1 −2 2 −1
1 2 −2 −1
1 −1 −1 1

 ⊗ [H]2

 =

𝐻2 𝐻2 𝐻2 𝐻2
𝐻2 −2𝐻2 2𝐻2 −𝐻2
𝐻2 2𝐻2 −2𝐻2 −𝐻2
𝐻2 −𝐻2 −𝐻2 𝐻2

Now, a generalized 4 × 4 Jacket matrix can be represented

as,

[J] 4 =

𝑎 𝑏 𝑏 𝑎
𝑏 −𝑐 𝑐 −𝑏
𝑏 𝑐 −𝑐 −𝑏
𝑎 −𝑏 −𝑏 𝑎

where a, b, c denote the weighted factors. This matrix is

weighted in the centre by

−𝑐 𝑐
 𝑐 −𝑐

If a = b = 1 and c = 𝜔 (the weight), the above matrix
reduces to

[J] 4 =

1 1 1 1
1 −𝜔 𝜔 −1
1 𝜔 −𝜔 −1
1 −1 −1 1

The CWHT is obtained by weighting the centre portion of

the transform matrix. For N = 2
r
, the transformed vector A is

represented as
Aj=

 −1 <𝑗 ,𝑖> 𝜔 𝑖𝑟−1⊕𝑖𝑟−2⊕… ⊕𝑖0 𝑗𝑟−1 ⊕ 𝑗𝑟−2 ⊕… ⊕𝑗0 𝑎𝑖
𝑁−1
𝑖=0 ,

 j = 0,1, 2, … , n-1 (1)

Here, i and j denote the row and column positions in the
above matrix J, ω is any real number and it is the weight. <j,
i> = 𝑗𝑟−1𝑖𝑟−1⨁𝑗𝑟−2𝑖𝑟−2 ⊕… ⊕ 𝑗0𝑖0 , where ⊕ is used to
identify modulo two addition.

Example 1: Generation of the elements of the above

matrix. Here, n = 4 = 2
r
and r = 2.

Now, < j, i > = 𝑗1𝑖1 ⊕ 𝑗0𝑖0

For, i = 0 = (00)2, j =0 = (00)2, < 0, 0> = 0 ⊕ 0 = 0.

The value of the element at position (0, 0) of the Jacket
matrix

= −1 <0,0>𝜔 𝑖1 ⊕𝑖0 𝑗1 ⊕𝑗0 = −1 0𝜔 0 ⊕0 0 ⊕0 = 1.

In the same way, when i = 2 = (10)2, j = 2 = (10)2,
< 2, 2 > =1 ⊕ 0 = 1, and the value at position (2, 2) of the

 Jacket matrix= −1 <2,2>𝜔 𝑖1 ⊕𝑖0 𝑗1 ⊕𝑗0 =
 −1 1𝜔 1 ⊕0 1 ⊕0 = − 𝜔.

III. THE MULTI MESH (MM) NETWORK

The Multi-Mesh network that was proposed by the authors
in [10] is made up of n

2
meshes shown in Fig. 1. In an n × n

mesh, the processors are arranged in n rows and n columns.
Such a mesh is used as the basic building block of the Multi-
Mesh (MM) network. Here total n

2
 such meshes are arranged in

the form of an n × n matrix where each constituent matrix is
termed as a block in MM network. In each block there are 4(n-
2) processors on the four outer boundaries each of which has
three neighbours within that block. These are called boundary
processors. Also, in each block there are four corner processors
each of which has two neighbours within that block. These are
called corner processors. The rest of the (n-2)

2
 processors in

every block will be termed as internal processors. Each block in
this network is connected to another block by suitable links so
that each processor has four links in this network topology.

A processor inside a given block can be uniquely identified

by two coordinates. Again blocks are organized as matrix form
so each block can be identified by two coordinates, say α and β
as B(α, β). Thus, each of the n

4
 processors in MM can uniquely

be identified using a 4-tuple of the coordinate values. The first
two coordinates are used to describe the block in which the
processor lies and the other two coordinates are used to identify
the position of the processor inside that particular block. For
example, P (α, β, x, y) is a processor lying at the x-th row and y-
th column of the block B (α, β).Each of these four coordinates
has value between 0 to n-1. A special symbol * will be used for
any one of these four coordinates to denote the set of all
processors with all possible values of the respective
coordinates. For example, P (*, *, 0, 0) signifies the set of the
top left corner processors of all the n

2
 blocks. If the processors

P(α, β1, x1, y1) are connected to P (α, β2, x2, y2) for all values of
α, 0 ≤ α ≤ n-1, we denote these sets of links by an
interconnection between the sets P (*, β1, x1, y1) and P (*, β2,
x2, y2). Inter-block connections among the boundary processors
are given by the following rules:

Vertical Connection is identified by following rule
∀ β, 0 ≤ β ≤ n-1, P (α, β, 0, y) are connected to P (y, β, n-1,

α), where 0 ≤ y, α ≤ n-1, and

International Journal on Future Revolution in Computer Science & Communication Engineering ISSN: 2454-4248
Volume: 4 Issue: 9 103 – 109

105

IJFRCSCE | September 2018, Available @ http://www.ijfrcsce.org

Horizontal Connection is identified by following rule
∀ α, 0 ≤ α ≤ n-1, P (α, β, x, 0) are connected to P (α, x, β, n-

1), where 0 ≤ x , β ≤ n-1

All these links are two-way connections. Hence, in the

multi-mesh network, all processors have a uniform degree of 4.
These inter-block connections among the boundary processors
are called inter-block links.

Figure 1. A simple n × n Multi-Mesh network with n = 4 (all links are not

shown).

In a simple n  n mesh only (n – 2)
2
 internal processors

have degree four, the four corner processors are of degree two
and 4(n – 2) boundary processors have degree three, as
opposed to degree four for all processors on the Multi-mesh.
Moreover, the diameter of the network is 2n as opposed to 2(n

2

-1) for an n
2
 × n

2
mesh.

For this reason, any real-life

applications can be solved on the proposed network more
efficiently than on the corresponding mesh with the same
number of processors. When time complexity is governed by
the diameter of the network, the MM network is more
advantageous than mesh. As examples of real-life applications,
simple problems like those of calculating the sum, average,
minimum, maximum of n

4
 data values with O(n) time on the

MM network having n
4
 processors have been implemented in

[10]. For non-trivial problems like sorting of n
4
 data values,

Discrete Fourier Transform (DFT) and Hadamard
Transformation have also been implemented in O (n) time [11],
[12]. [13]. In the case of simple n

2
× n

2
 mesh each of these

problems takes O (n
2
) time. The reduced time complexity has

been achieved due to the inter block links among the boundary
processors of the meshes as defined by the above two rules.

IV. IN-PLACE GENERATION OF JACKET MATRIX ELEMENTS

IN MULTI MESH

For a two-dimensional mesh the element (i, j) of Jacket
matrix is generated using the equation

 −1 𝑏𝑖𝑛 𝑖 . 𝑏𝑖𝑛 𝑗 𝜔 𝑖𝑟−1⊕𝑖𝑟−2⊕… ⊕𝑖0 𝑗𝑟−1 ⊕ 𝑗𝑟−2⊕… ⊕𝑗0

In case of multi mesh of size n × n with each of the block

having n × n elements, the Jacket elements of a Jacket matrix of
size n

2
 × n

2
 can be generated based on the position of the

processor element in the multi mesh. Since, the position of an

element in multi mesh involves four parameters α, β, x and y, a
Jacket element at (α, β, x, y) can be generated as given below.

P (α, β, x, y) =

 −1 bin 𝛼 ∘ bin 𝑥 . bin 𝛽 ∘ bin 𝑦 𝜔 𝑋𝑟−1⨁X𝑟−2 … ⨁𝑋0 𝑌𝑟−1 ⊕𝑌𝑟−2… ⨁𝑌0

 (2)
where X = x + α n and Y = y + β n and binary representation

of X and Y are 𝑋r−1 Xr−2… X0 and 𝑌r−1 Yr−2…Y0 respectively.

Here, bin (α), bin (β), bin (x) and bin (y), stands for binary

representation of α, β, x and y respectively. “∘” is used to
denote concatenation and “.” stands for dot product of the
binary numbers.

In the above equation x and y are the row and column in
each of the block matrix in multi mesh and 0 ≤ x, y ≤ n-1
whereas 0 ≤ X, Y ≤ n

2
 -1, n

2
= 2

r
and N = n

4
.

Example 2: If n = 4 and α = 2, β = 3, x = 3, y = 0

𝑃 2, 3, 3, 0

= −1 𝑏𝑖𝑛 2 ∘ 𝑏𝑖𝑛 (3) 𝑏𝑖𝑛 3 ∘ 𝑏𝑖𝑛 (0) 𝜔 𝑋3 ⨁𝑋2 ⨁X1 ⨁X0 𝑌3⨁𝑌2⨁𝑌1⨁𝑌0

= −1 1011 ∘ 1100 𝜔 1⨁0 ⨁1⨁1 1⨁1⨁ 0 ⨁0

= −1 1.1 + 0.1 + 1.0 + 1.0
= −1

Similarly, P (3, 3, 3, 3) = 1.𝜔 1⨁1⨁1⨁1 1⨁1⨁1⨁1 =
1.𝜔0 = 1

In binary number system, number of bits required to

represent each α, β, x, y is same and depends on the value of n.
If n × n mesh is used as a building block to form MM, the bit
required will be log2 n.

V. JACKET TRANSFORMATION BY MATRIX VECTOR

MULTIPLICATION

For Jacket matrix elements are generated in place using the
formula described in section 4. Now, this 2

m
 × 2

m
 Jacket matrix

(Jm) is being used for the Jacket transformation of an input real
vector a = (a0, a1,..., an-1) of length n = 2

r
. The transformed

vector A = (A0, A1… An-1) is expressed as,

𝐴0

𝐴1

⋮
𝐴𝑛−1

 = [Jm]

𝑎0

𝑎1

⋮
𝑎𝑛−1

VI. PARALLEL IMPLEMENTATION OF JACKET

TRANSFORMATION

Parallel implementation of Jacket transformation will now

be described using an MM network to achieve the O (n) time
complexity.

After the in place generation of matrix elements in all the

nodes/processing elements of multi mesh network, the next

International Journal on Future Revolution in Computer Science & Communication Engineering ISSN: 2454-4248
Volume: 4 Issue: 9 103 – 109

106

IJFRCSCE | September 2018, Available @ http://www.ijfrcsce.org

step is to input the vector a of length n to the multi mesh
through upper boundary of the MM network and propagate to
other processors of the network as shown in Fig. 2. Only first
four components of vector a are shown in this figure as only
the first column of the MM network is shown for the data
movement. Vector a is propagated along intra block links as
well as inter block links as shown in Fig. 2. Next step is to
perform the matrix multiplication of vector a and the Jacket
matrix elements those already have been generated in place as
per the equation (2) given above. An element of transformed
vector can be expressed as ci j = [Jm]i j × aj. To get the

transformed vector it is required to perform 𝐴𝑖 = 𝑐𝑖𝑗
𝑛2−1
𝑗=0

for each i, where, all cij„s are to be brought in a single block M
(i/n, i%n), as they are now scattered in i

th
 rows of n different

blocks. To bring the related elements in a single block n left
shifts are performed along horizontal inter block links of the
MM as shown in Fig. 3.

Figure 2. Data movement of vector a in blocks M (*, 0) of a 4 × 4 MM. (a)

Input of vector a is done through the upper boundary of the block M (0, 0) (b)

a values are moved vertically to other blocks by vertical inter block links (c) a

values are moved horizontally in the last row of each block in parallel (d) a
values at the last row of each block are moved vertically through vertical inter

block links (e) a values are propagated along column direction in each block

in parallel

Figure 3. Contents of blocks M (0, *) after n (=4) steps data movement along

the horizontal inters block links in a 4 ×4 MM

Now each of the blocks in multi mesh contains n

2
 values

which are summed along column wise followed by row wise at
the first row of each mesh in parallel as shown in Fig. 4. After
this a single step of horizontal data movement along the
horizontal inter block links is done in parallel for all meshes in
parallel. This horizontal data movement along inter block links
bring all the values of MM at the left boundary of it as shown
in Fig. 5 (only a single row of meshes is shown in the figure).

Figure 4. Column sum followed by summation in 0th row of each block in

MM for n = 4

International Journal on Future Revolution in Computer Science & Communication Engineering ISSN: 2454-4248
Volume: 4 Issue: 9 103 – 109

107

IJFRCSCE | September 2018, Available @ http://www.ijfrcsce.org

Figure 5. Single step data movement along horizontal inter block link in MM

for n = 4

VII. PARALLEL JACKET TRANSFORM USING MM NETWORK

A. Algorithm PJT

1. Initialization step: Two separate registers say R1 and

R2 are being used for each processor in MM and both

are initialized in this step by initializing R1 by the

values of Jm, Jacket Matrix, by in place generation of

the Jacket matrix elements based on the position of the

processor in MM following the formula given in

equation (2) and the vector to be transformed i.e. the

vector a is pushed through the upper boundary of the

MM network in the R2 registers and moved

accordingly.

Step 1: ∀ α, β, x and y, 0 ≤ α, β, x, y ≤ n-1 do in

parallel

R1 (α, β, x, y) ←

 −1 𝑏𝑖𝑛 𝛼 ∘ 𝑏𝑖𝑛 𝑥 . 𝑏𝑖𝑛 𝛽 ∘ 𝑏𝑖𝑛 𝑦𝑥 𝜔 𝑋𝑟−1⨁𝑋𝑟−2 𝑌𝑟−1 ⊕𝑌𝑟−2

where, X = x + α n and Y = y + β n

In the above equation x and y are the row and column

in each of the block matrix in multi mesh and 0 ≤ x, y

≤ n-1 whereas 0 ≤ X, Y ≤ n
2
 -1, n

2
 = 2

r
 and N = n

4
.

Step 2: ∀ β and y, 0 ≤ α, β, y ≤ n-1 do in parallel

R2 (0, β, 0, y) ← 𝑎𝛽𝑛+𝑦

2. Propagation of Vector a in MM network:

I. ∀ β and y, 0 ≤ β, y ≤ n-1 do in parallel

R2 (y, β, n-1, 0) ← R2 (0, β, 0, y);

II. ∀ α, β, 0 ≤ α, β ≤ n-1 do in parallel

for i = 1 to n-1 do

R2 (α, β, n-1, i) ← R2 (α, β, n-1, i-1);

III. ∀ α, β, i, 0 ≤ α, β, i ≤ n-1 do in parallel

R2 (i, β, 0, α) ← R2 (α, β, n-1, i);

IV. ∀ α, β, j, 0 ≤ α, β , j ≤ n-1 do in parallel

for i = 1 to n-1 do

 R2 (α, β, i, j) ← R2 (α, β, i-1, j);

3. Generation of partial product in register R1 for each

block in parallel:

∀ α, β, x and y, 0 ≤ α, β, x, y ≤ n-1 do in parallel

R1 (α, β, x, y) ← R1 (α, β, x, y) × R2 (α, β, x,

y);

4. Data Movement along horizontal inter block links:

Horizontal inter block link in MM forms cycle of

length 2n between the r
th

row of the block M (p, q)

and the q
th

 row of the block M (p, r) for q ≠ r, 0 ≤ p ≤

n-1. For a given α, if data elements in M (α, *) are

shifted through n positions along the horizontal

cycles, then the p
th

 row elements of M (α, q) will also

be shifted to the q
th

 row of M (α, p), 0 ≤ α ≤ n-1.

/* Here, `*‟ indicates all possible values from 0 to

n-1, but the same value for it must be used on both

sides of the assignment operator */

∀ α and β, 0 ≤ α, β ≤ n-1 do in parallel

begin

I. R1(α, β,*, n-1) ← R1(α,*, β, 0);

II. for j = n-1 down to 1 do in parallel

 R1 (α, β,*, j-1) ← R1 (α, β, *, j);

endfor

end

/* Steps I and II are in parallel */

5. Addition step at each block of MM in parallel:

∀ α, β, y 0 ≤ α, β, y ≤ n-1 do in parallel

/* Sum along each column in each mesh */

International Journal on Future Revolution in Computer Science & Communication Engineering ISSN: 2454-4248
Volume: 4 Issue: 9 103 – 109

108

IJFRCSCE | September 2018, Available @ http://www.ijfrcsce.org

begin

for j = 0 to (log2 n - 1)

begin

 for i = 0 to (n - 1) in step (2
j+1

) do

 R1 (α, β, i, y) ← R1 (α, β, i, y) + R1 (α, β, i

 + 2
j
, y)

 end

end

/* Registers R1 of processors P (α, β, 0, i) contain the column

sums for ∀ α, β, i, 0 ≤ α, β, i ≤ n-1 */

∀ α , β, 0 ≤ α, β ≤ n-1 do in parallel

/* Summing along the 0
th

 row in each block*/

begin

k = 0;

for j = 0 to (log2 n - 1)

begin

 for i = k to (n - 1) in step (2
j+1

) do

 R1 (α, β, 0, i + 2
j
) ← R1 (α, β, 0, i) + R1 (α, β, 0, i +

 2
j
);

 k = k + 2
j
;

 end

end

/* The sum of n
2

data values of the block is finally brought to

the register R1 of processor P (α, β, 0, n-1) */

6. Data movement for the final output vector from MM:

The output vector or the transformed vector C is moved to the

0th column of all the blocks M (α, 0), 0 ≤ α ≤ n-1.

∀ α and β , 0 ≤ α, β ≤ n-1 do in parallel

 R1 (α, 0, β, 0) ← R1 (α, β, 0, n-1);

/* It is a single step horizontal data movement along inter

block links */

B. Simulation of the algorithm PHT

Simulation program of the parallel algorithm PHT is done

using GCC Open MPI library. The resultant transformed output
vector for a given input vector was verified with a serial Jacket
transformation algorithm.

VIII. TIME COMPLEXITY OF PARALLEL JACKET

TRANSFORMATION

 Constant time say t1 is required for initialization.

Propagation of vector B requires 2n steps of data movements in
stage 2. Generation of partial products needs constant time t2 in
stage 3. Data movements in stage 4 require n steps. Stage 5
requires 2(n-1) data movement steps and 2 log2 n addition
steps. Data arrangement i.e. stage 6 is done in single step. So,
total number of steps required for the entire process is t1 + t2 +
5n + 2 log2 n, where t1 is constant time for in place generation
of Jacket matrix elements in parallel, t2 is constant time for
generation of partial products in parallel, steps required for data
movement is 5n and 2 log2 n is the number of addition steps.
So, total time required is t1 + t2 + 5n + 2log2 n = 5N

1/2
 + t +

2log2 N
1/2

 where N
2
 = n

4
, t = t1 + t2 and t > 0, which implies

time complexity of this algorithm is O (n) or O (N
1/2

).

IX. TIME COMPLEXITY OF PARALLEL JACKET

TRANSFORMATION

A parallel algorithm for Jacket transformation of vector of

length N has been proposed with O (log √N)) addition time and
O (√N) data movement time. Each processor of the MM
network, having N

2
 processors, generates a single component

of the Jacket matrix element depending on the processor
position in MM network i.e. each of the components is
generated in place. The proposed algorithm has suggested an
implementation of the Jacket Transform in a new parallel
architecture which is of lower diameter, lower degree and
regular interconnections.

Moreover, the MM network is more advantageous than

mesh of same size for implementation of Jacket Transform. In
case of simple n2 × n2 mesh this problem would have taken O
(n2) time. The reduced time complexity has been achieved due
to the inter block links among the boundary processors of the
meshes.

The proposed algorithm can be modified to calculate the

scaled up version of the problem. In the present paper Jacket
matrix of size 2

4
 × 2

4
 has been used in the example to execute

the proposed algorithm which can be suitably modified to
compute Jacket matrix of size 2

4+1
× 2

4+1
 to transform the input

vector of size 2
4+1

 using the same number of processors. In the
later case each processor has to compute four partial products
resulting in increase of time complexity by a constant.

ACKNOWLEDGMENT

The authors express their sincere gratitude to the faculty
members of the Department of Engineering & Technological
Studies, University of Kalyani, and West Bengal, India, where
the work has been carried out.

International Journal on Future Revolution in Computer Science & Communication Engineering ISSN: 2454-4248
Volume: 4 Issue: 9 103 – 109

109

IJFRCSCE | September 2018, Available @ http://www.ijfrcsce.org

REFERENCES

[1] K. J. Horadam: An introduction to cocyclic generalized

Hadamard matrices, Discrete Applied Math, 102 (2000), 115-

131.

[2] K. J. Horadam: A Generalised Hadamard Transform, IEEE

International Symposium on Information Theory, Adelaide,

Australia, September 4-9, 2005.

[3] Moon Lee: The Center Weighted Hadamard Transform, IEEE

Transactions on Circuits and Systems, Vol. 36, No. 9, pp 1247-

1249, September 1989.

[4] Moon Ho Lee: A new reverse jacket transform based on

Hadamard matrix, IEEE Transactions on Circuits and Systems

II: Analog and Digital Signal Processing, vol. 47, pp. 39-47,

2000.

[5] Moon Ho Lee: Information Theory, 2000. Proceedings, IEEE

International Symposium on Information Theory, pp 471, 2000.

[6] C. P. Fan and J. F. Yang: Fast center weighted Hadamard

transform algorithm, IEEE Transactions Circuits Syst. II, vol.

45, pp 436-441, Mar. 1998.

[7] R. A. Hom, C. R. Johnson: Topics in Matrix analysis,

Cambridge University Press, New York, 1991.

[8] Yun Mao, Jun Peng, Ying Guo and Moon Ho Lee: On the fast

fractional Jacket transform, Circuit syst Signal Process, (2014),

33. 1491-1505.

[9] D. Park and Moon Ho Lee : Jacket matrix bases recursive

Fourier analysis and its applications, (2015), In Tech, DOI:

10.5772/59353.

[10] D. Das, M.De and B.P.Snha: A new network topology with

multiple meshes, IEEE Transactions on Computers, 48 (5),

1999, 536-551.

[11] M. De, D. Das and B. P. Sinha: An efficient sorting algorithm on

the Multi-mesh network, IEEE Transactions

on Computers, 46 (10), 1997, 1132-1137.

[12] S. De, A. Datta, A. B. Bhattacharya and M. De: Fast Parallel

Algorithm for Discrete Fourier Transform in Multi-Mesh

Network, Journal of Parallel and Distributed Computing and

Network, ISSN (Online) 1925-5543, ISSN (Print): 1925-

5535, ACTA press, pp.1-15, 2014,DOI:

10.2316/Journal.211.2014.4.211- 1012.

[13] A. Datta, S. Das and M. De: Parallel Hadamard Transform in

Multi Mesh Network, Proc. International Conference on

High Performance Computing and Applications (ICHPCA

2014), 22nd- 24th Dec., Bhubaneswar, Also in IEEE Digital

Explore, DOI: 10.1109/ICHPCA.2014.7045320.

