
International Journal on Future Revolution in Computer Science & Communication Engineering ISSN: 2454-4248
Volume: 4 Issue: 9 91 – 97

Retrieving Data from Encrypted file by using Cosine Similarity

G. Mounica, J. Prasanna Kumar,
PG Scholar, Professor,

Department of CSE, Department of CSE,
MVSR Engineering College. MVSR Engineering College.

Abstract-Nowadays every user who uses Internet wants to search for anything and everything using Search Engines. This is the need for
everyone. To engineer a search engine is a challenging task. Search engines index tens to hundreds of millions of files involving a comparable
number of distinct terms. They answer tens of millions of queries every day. Due to rapid advance in technology and need for information
security, creating a web search engine today is very different from three years ago. The overall goal of this project is to develop a scalable, high
performance search engine which searches the encrypted data without decryption. The main focus is on the algorithmic challenges and
encryption while supporting fast searches on it. To develop this project, an applied ranking algorithm to give better results to the user and also
used other algorithms to encrypt the data stored. To ease for searching of various information over the data by giving search keywords requires
software. The search engine software ensures the end user to get the information by accessing the data specified in the database.

Keywords: Database Administration, Security, integrity, and protection.

__*****___

I. Introduction
Online applications are vulnerable to theft of sensitive
information because adversaries can exploit software bugs
to gain access to private data, and because curious or
malicious administrators may capture and leak data.
CryptDB is a system that provides practical and provable
confidentiality in the face of these attacks for applications
backed by SQL databases. It works by executing SQL
queries over encrypted data using a collection of efficient
SQL-aware encryption schemes. CryptDB can also chain
encryption keys to user passwords, so that a data item can be
decrypted only by using the password of one of the users
with access to that data. As a result, a database administrator
never gets access to decrypted data, and even if all servers
are compromised, an adversary cannot decrypt the data of
any user who is not logged in. An analysis of a trace of 126
million SQL queries from a production MySQL server
shows that CryptDB can support operations over encrypted
data for 99.5% of the 128,840 columns seen in the trace. the
evaluation shows that CryptDB has low overhead, reducing
throughput by 14.5% for phpBB, a web forum application,
and by 26% for queries from TPC-C, compared to
unmodified MySQL. Chaining encryption keys to user
passwords requires 11-13 unique schema annotations to
secure more than 20 sensitive fields and 2-7 lines of source
code changes for three multi-user web applications.

Theft of private information is a significant problem,
particularly for online applications. An adversary can
exploit software vulnerabilities to gain unauthorized access
to servers; curious or malicious administrators at a hosting
or application provider can snoop on private data; and
attackers with physical access to servers can access all data

IJFRCSCE | September 2018, Available @ http://www.ijfrcsce.org

on disk and in memory. One approach to reduce the damage
caused by server compromises is to encrypt sensitive data,
and run all computations (application logic) on clients.
Unfortunately, several important applications do not lend
themselves to this approach, including database-backed web
sites that process queries to generate data for the user, and
applications Permission to make digital or hard copies of
part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page.

Copyrights for components of this work owned by others
than ACM must be honored. Abstracting with credit is
permitted. To copy otherwise, to republish, to post on
servers or to redistribute to lists, requires prior specific
permission and/or a fee. Even when this approach is tenable,
converting an existing server-side application to this form
can be difficult. Another approach would be to consider
theoretical solutions such as fully homomorphic encryption,
which allows servers to compute arbitrary functions over
encrypted data, while only clients see decrypted data.
However, fully homomorphism encryption schemes are still
prohibitively expensive by orders of magnitude.

The cleverest part of CryptDB, however, is that it's able to
switch between crypto systems on the fly depending on the
operation. The data in the database is encrypted in multiple
layers of different encryption, what the researchers call an
"onion" of encryption. Every layer allows different kinds of
computation and has a different key.The most secure
schemes are used on the outside of that onion and the least
secure are used on the inside. CryptDB manages to perform
all its functions of a database without ever removing that

91

International Journal on Future Revolution in Computer Science & Communication Engineering ISSN: 2454-4248
Volume: 4 Issue: 9 91 – 97

last layer of the onion, so that the data always remains
secure.

CryptDB has its limits, the MIT researchers warn--no square
roots, for one example. And while the data is never
completely decrypted, it does "leak" information about the
underlying data when enough outer layers of encryption are
removed, revealing attributes like which data points are
equal to each other. the sampled operations from several real
databases like one used by a Web forum and another by a
grade-calculating application, and found that their encrypted
system would allow the same calculations as an unencrypted
database in 99.5% of those operations, and that data the
researchers deemed "sensitive" is never leaked in those test
cases.

II. Related work
Now a days every user who uses Internet wants to search for
anything and everything using Search Engines. Due to rapid
advance in technology and need for information security,
creating a web search engine today is very different from
three years ago. The overall goal is to develop a scalable, high
performance search engine, which searches the encrypted
data without decryption. In this calculated the tf-idf and
cosine similarity for every term to search the keyword.

Query-biased preview over outsourced and encrypted data.

 For both convenience and security, more and more users
encrypt their sensitive data before outsourcing it to a third
party such as cloud storage service. However, searching for
the desired documents becomes problematic since it is costly
to download and decrypt each possibly needed document to
check if it contains the desired content. An informative query-
biased preview feature, as applied in modern search engine,
could help the users to learn about the content without
downloading the entire document. However, when
the data are encrypted, securely extracting a keyword-in-
context snippet from the data as a preview becomes a
challenge. Based on private information retrieval protocol and
the core concept of searchable encryption, a propose of a
single-server and two-round solution to securely obtain a
query-biased snippet over the encrypted data from the server.

A layered searchable encryption scheme with functional
components independent of encryption methods.

 Searchable encryption technique enables the users to
securely store and search their documents over the remote
semitrusted server, which is especially suitable for protecting
sensitive data in the cloud. However, various settings (based
on symmetric or asymmetric encryption) and functionalities
(ranked keyword query, range query, phrase query, etc.) are
often realized by different methods with different searchable
structures that are generally not compatible with each other,

IJFRCSCE | September 2018, Available @ http://www.ijfrcsce.org

which limits the scope of application and hinders the
functional extensions.
To prove that asymmetric searchable structure could be
converted to symmetric structure, and functions could be
modeled separately apart from the core searchable structure.
Based on this observation, To propose a layered
searchable encryption (LSE) scheme, which provides
compatibility, flexibility, and security for various settings
and functionalities. In this scheme, the outputs of the core
searchable component based on either symmetric or
asymmetric setting are converted to some uniform
mappings, which are then transmitted to loosely coupled
functional components to further filter the results.

 Secure Inverted Index Scheme
An inverted index is a data structure loading words or
numbers in a file along with its location. The determination
of an inverted index is to progress the time of full text
searches. An inverted index holds an index of keywords
which stores a different list of terms finding the collection
and, for individually term, a posting the updating list of
documents that hold the keyword. An inverted index
improves search effectiveness which is required for very
large text files. An inverted index consists of a distinct term
and a posting list which stores the IDs of the documents that
hold that term. In count to an ID, each posting holds list
element gives the number of rates occurrences of that term
in the document.

 Figure: Structure of an Inverted Index

It provides good retrieval performance as well as better
security for indexes. The major drawback of this process is
that, It Track unnecessary network traffic for retrieval of
data. Public Key Encryption with keyword Search.

III. Problem Statement
This problem is concerned with how to provide a list of
documents in the database corresponding to the words in a
query. Each time the documents containing a one word of
query are only given as the output of the proposed system.
The query may contain many words that need to be located
in the documents.

IV. System Implementation Architecture
CryptDB comprises of three major components, namely the
Application Server, Proxy Server and DBMS Sever.
Application Server is the main server that runs CryptDB’s

93

International Journal on Future Revolution in Computer Science & Communication Engineering ISSN: 2454-4248
Volume: 4 Issue: 9 91 – 97

database proxy and also the DBMS Server. The Proxy
Server stores a secret Master Key, the database Schema and
the onion layers of all the columns in the database. The
DBMS server has access to the anonymized database
schema, encrypted database data and also some
cryptographic user-defined functions (UDF’s). The DBMS
server uses these cryptographic UDF’s to carry out certain
operations on the encrypted data (cipher text).

The CryptDB proxy consists of a C++ library and a Lua
module. The C++ library consists of a query parser; a query
encryptor/rewriter, which encrypts fields or includes UDFs
in the query; and a result decryption module. To allow
applications to transparently use CryptDB, used MySQL
proxy [47] and implemented a Lua module that passes
queries and results to and from our C++ module. CryptDB
implementation consists of _18,000 lines of C++ code and
_150 lines of Lua code, with another _10,000 lines of test
code. CryptDB is portable and had implemented versions for
both Postgres 9.0 and MySQL 5.1. The initial Postgres-
based implementation is described in an earlier technical
report [39]. Porting CryptDB to MySQL required changing
only 86 lines of code, mostly in the code for connecting to
the MySQL server and declaring UDFs. As mentioned
earlier, CryptDB does not change the DBMS; all server-side
functionality are implemented with UDFs and server-side
tables. CryptDB’s design, and to a large extent
implementation, should work on top of any SQL DBMS that
supports UDFs.

Figure: System Architecture

V. CryptDB
CryptDB is a DBMS that provides provable and practical
privacy in the face of a compromised database server or
curious database administrators. CryptDB works by
executing SQL queries over encrypted data. At its core are
three novel ideas: an SQL-aware encryption strategy that
maps SQL operations to encryption schemes, adjustable
query based encryption which allows CryptDB to adjust the
encryption level of each data item based on user queries,
and onion encryption to efficiently change data encryption
levels. CryptDB only empowers the server to execute
queries that the users requested, and achieves maximum
privacy given the mix of queries issued by the users.

IJFRCSCE | September 2018, Available @ http://www.ijfrcsce.org

The database server fully evaluates queries on encrypted
data and sends the result back to the client for final
decryption; client machines do not perform any query
processing and client-side applications run unchanged.

CryptDB is a system that provides practical, provable
confidentiality and privacy that guarantees without having to
trust the DBMS server or the DBAs who maintain and tune
the DBMS. CryptDB is the first private system to support all
of standard SQL over encrypted data without requiring any
client-side query processing, modifications to existing
DBMS codebases, changes to legacy applications and
offloads virtually all query processing to the server.
CryptDB works by rewriting SQL queries, storing encrypted
data in regular tables, and using an SQL user-defined
function (UDF) to perform server-side cryptographic
operations.

It works by executing SQL queries over encrypted data
using a collection of efficient SQL-aware encryption
schemes. CryptDB can also chain encryption keys to user
passwords, so that a data item can be decrypted only by
using the password of one of the users with access to that
data. As a result, a database administrator never gets access
to decrypted data, and even if all servers are compromised,
an adversary cannot decrypt the data of any user who is not
logged in.

Below describe the steps involved in processing a query
inside CryptDB
In the first step a query is issued by the application server.
The proxy server receives this query and it anonymizes the
table name and each of the column names. The proxy server
also encrypts all the constants in the query using the stored
secret master key. The encryption layers or the onion layers
are also adjusted based on the type of operation required by
the issued query. For example, if the query has to perform
some equality checks then the deterministic encryption
Scheme (DET)is applied to encrypt all the values in that
particular column (on which equality check is to be
performed).

The encrypted user query is then passed on to the DBMS
server. The DBMS server executes these queries using
standard SQL and also invokes UDF’s to perform certain
operations like token search and aggregation. The queries
are executed on the encrypted database data. The DBMS
server performs computations on the encrypted data and
forwards the encrypted results back to the proxy server. The
proxy server decrypts the encrypted query result obtained
and returns it to the application server.

94

International Journal on Future Revolution in Computer Science & Communication Engineering ISSN: 2454-4248
Volume: 4 Issue: 9 91 – 97

Figure: Threats

Threat 1: DBMS server compromise CryptDB provides
confidentiality for the content of the data and for names of
columns and tables, but does not hide the overall table
structure, the number of rows, the types of columns, or the
approximate size of data in bytes. The only information that
CryptDB reveals to the DBMS server is relationships among
data items corresponding to classes of computation that
queries perform on the database, such as comparing items
for equality, sorting, or performing word search. The
granularity at which CryptDB allows the DBMS to perform
a class of computations is an entire column (or a group of
joined columns, for joins), which means that even if a query
requires equality checks for a few rows, executing that
query on the server would require revealing that class of
computation for an entire column.

Threat 2: arbitrary confidentiality attacks on any servers
the second threat is where the application server, proxy, and
DBMS server infrastructures may be compromised
arbitrarily. The approach in threat 1 is insufficient because
an adversary can now get access to the keys used to encrypt
the entire database. The solution is to encrypt different data
items (e.g., data belonging to different users) with different
keys. To determine the key that should be used for each data
item, developers annotate the application’s database schema
to express finer-grained confidentiality policies. A curious
DBA still cannot obtain private data by snooping on the
DBMS server (threat 1), and in addition, an adversary who
compromises the application server or the proxy can now
decrypt only data of currently logged-in users (which are
stored in the proxy). Data of currently inactive users would
be encrypted with keys not available to the adversary, and
would remain confidential.

VI. Encryption Types
Each type uses a different algorithm that meets the specified
requirements for a certain type and can be exchanged for
another algorithm should the need arise, e.g. when a used
cipher is broken. In such an event existing encrypted data
would have to be decrypted with the old algorithm and re-
encrypted using the new one. And had listed the different
layers from most to least secure. Whereas least secure
means that this particular layer does reveal the most

IJFRCSCE | September 2018, Available @ http://www.ijfrcsce.org

information about its encrypted content, please notice that
this is sometimes unavoidable in order to perform certain
operations and is not automatically insecure.

Random (RND)
The RND onion layer provides the strongest security
assurances: It is probabilistic, meaning that the same
plaintext will be encrypted to a different cipher text. On the
other hand, it does not allow any feasible computation in a
reasonable amount of time. If someone wants to know
something about the content of these fields the encrypted
data has to be retrieved as a whole to be decrypted by
CryptDB. This type seems to be reasonable choice for
highly confidential data like medical diagnosis, private
messages or credit card numbers that do not need to be
compared to other entries for equality.

Homomorphic encryption (HOM)
The HOM onion layer provides an equally strong security
assurance, as it is considered to be IND-CPA secure too [1].
It is specifically designed for columns of the data type
integer and allows the database to perform operations of an
additive nature. This includes of course the addition of
several entries, but also operations like SUM or AVG. The
reason that only addition is supported lies in the fact that
fully homomorphic calculations, while mathematically
proven by M. Cooney, is unfeasible slow on current
hardware. An exception is the homomorphic addition
HOM(x)· HOM(y) = HOM(x + y) mod n, that can be
performed in a reasonable amount of time. In CryptDB the
developers choose to implement the homomorphic addition
using the Paillier cryptosystem [13]. Currently the cipher
text of a single integer is stored a VARBINARY (256), this
means it uses 256 bytes of space which is 64 times the size
of a normal integer thatwouldonlyuse4bytes. Considering
that integers are among the most used data types in a
database. This is a huge overhead. Popa et al. indicate that
there might be a more efficient way to store the integers with
the use of a scheme developed by Ge and Zdonik. As of
today this has not been implemented.

Order-preserving encryption (OPE)
The OPE onion layer is significantly weaker than the DET
layer as it reveals the order of the different entries. This
means that the DBMS knows relations like bigger and
smaller, but also equality (without having to look at the Eq
onion). This means that if x < y, then OPE(x) < OPE(y), also
if x = y, then OPE(x) = OPE(y). This allows us to use
ordered operations like MIN, MAX or ORDER BY. To
achieve this functionality, the developers of CryptDB
implemented an algorithm that was published by Boldyreva
et al. and was inspired by the ideas suggested by Agrawal et
al. In regards to security it is noteworthy that this onion

95

International Journal on Future Revolution in Computer Science & Communication Engineering ISSN: 2454-4248
Volume: 4 Issue: 9 91 – 97

layer is the most revealing one: It cannot fulfill the security
definition of IND-CPA, as is shown by Boldyreva et al.
Even more important it reveal snot just the order but also the
proximity of the transformed values to an attacker. This
behavior might be acceptable for some values (e.g. text), but
might be an issue for others (e.g. financial data).

CryptDB security related papers
Even though security is not an official part of this thesis,
security is still an important topic when it comes to usability
and whether it is worth the additional coasts. One question
that had in the beginning was whether a curious database
administrator could still draw conclusions from the
encrypted data sets and whether he would able to take
advantage of that, either by getting interesting insights or by
actually being able to manipulate things in a way that would
gain him further access to data. For these questions like to
feature the following two papers: The first one is “On the
Difficulty of Securing Web Applications using CryptDB” by
Ihsan H. Akin and Berk Sunar and the second one is
“Inference Attacks on Property Preserving Encrypted
Databases” by Muhammad Naveed, Seny Kamara and
Charles V. Wright.

VII. Expermental Evolution

Cosine Similarity is calculated by encrypting the files using
tf-idf values and the results are evaluated by knowing the
search time required to search the keyword.

VIII. Conclusion
In the face of snooping Database Administrators (DBAs)
and compromise from attackers, confidentiality in Database
Management Systems (DBMS) should still remain.
CryptDB is a system which acts as a proxy to secure the
communication between the database server and the
applications server. an application is built over cryptdb that
receives query from the user and returns the most relevant
documents to the user. Vector based model is employed for
information retrieval. In the first step, all the keywords in
the document collection and corresponding tf-idf values are
send to cryptdb.

IJFRCSCE | September 2018, Available @ http://www.ijfrcsce.org

 CryptDB receives them from the application server
secures them and sends them to the database server.
When the user gives query, application will invoke the
CryptDB for tf-idf values. CryptDB will receive the
encrypted data from the database decrypts it and sends
it to the application server. From these tf-idf values
document vectors are created. Then using cosine
similarity, the relevant documents are retrieved and
ranked and returned to the user. Thus, the entire
retrieval process is secured.

IX. References

1. Raluca Ada Popa, Catherine M. S. Redfield, Nickolai
Zeldovich, and Hari Balakrishnan. CryptDB: Protecting
Confidentiality with Encrypted Query Processing. In
Proceedings of the 23rd ACM Symposium on Operating
Systems Principles (SOSP), Cascais, Portugal, October
2011. (This is the main paper describing CryptDB.)

2. Raluca Ada Popa, Frank H. Li, and Nickolai Zeldovich.An

Ideal-Security Protocol for Order-Preserving Encoding.In
Proceedings of the 34th IEEE Symposium on Security and
Privacy (IEEE S&P/Oakland), San Francisco, CA, May
2013.(This paper constructs the encryption scheme that
computes order queries in CryptDB.)

3. Stephen Tu, M. Frans Kaashoek, Samuel Madden, and
Nickolai Zeldovich. Processing Analytical Queries over
Encrypted Data.In Proceedings of the 39th International
Conference on Very Large Data Bases (VLDB), Riva del
Garda, Italy, August 2013.(This paper extends CryptDB's
basic design to complex analytical queries and large data
sets.)

4. Raluca Ada Popa and Nickolai Zeldovich.Cryptographic
treatment of CryptDB's Adjustable Join.Technical Report
MIT-CSAIL-TR-2012-006, Computer Science and
Artificial Intelligence Laboratory, Cambridge, MA, March
2012.(A formal description and analysis of CryptDB's
adjustable join cryptographic scheme.)

5. Carlo Curino, Evan P. C. Jones, Raluca Ada Popa, Nirmesh
Malviya, Eugene Wu, Sam Madden, Hari Balakrishnan,
and Nickolai Zeldovich.Relational Cloud: A Database-as-a-
Service for the Cloud.In Proceedings of the 5th Biennial
Conference on Innovative Data Systems Research (CIDR
2011), Pacific Grove, CA, January 2011.(A paper
describing how CryptDB can help with hosting databases
in the cloud.)

6. Alexandra Boldyreva, Nathan Chenette, and Adam
O’Neill. Order-preserving encryption revisited: improved
securityanalysis and alternative solutions.

7. Seny Kamara. Attacking encrypted database systems, blog
post, Outsourced bits, snapshot as of Sept 7, 2015.

8. Vladimir Kolesnikov and Abdullatif Shikfa. On the limits
of privacy provided by order-preserving encryption. Bell
Labs Technical Journal, 17(3):135–146, 2012.

9. Muhammad Naveed, Seny Kamara, and Charles V. Wright.
Inference attacks on property-preserving encrypted
databases. 2015.

96

International Journal on Future Revolution in Computer Science & Communication Engineering ISSN: 2454-4248
Volume: 4 Issue: 9 91 – 97

10. MySQL AB, “MySQL performance benchmarks,” A MySQL

Technical White Paper, 2005. [Online]. Available:

http://www.jonahharris.com/osdb/mysql/mysql-performance-

whitepaper.pdf

11. Google,“Encryptedbigqueryclient,”https://github.com/google/
encrypted-bigquery-client, 2015.

12. P. Grofig, M. Haerterich, I. Hang, F. Kerschbaum, M.

Kohler, A. Schaad, A. Schroepfer, and W. Tighzert,

“Experiences and observations on the industrial

implementation of a system to search over out-sourced

encrypted data.” in Sicherheit, 2014, pp. 115–125.

13. I. H. Akin and B. Sunar, “On the difficulty of securing web
applications using cryptdb,” in Big DataB and Cloud
Computing (BdCloud), 2014 IEEE Fourth International
Conference on. IEEE, 2014, pp. 745–752.

14. M.Kantarcioglu and C. Clifton. Security issues in
queryingencrypted data. Technical Report CSD TR 04-013,
PurdueUniversity, Department of Computer Sciences, 2004.

15. L. Xiong, S. Chitti, and L. Liu. Preserving data privacy
foroutsourcing data aggregation services. Technical report,

16. Savoy, J. (1997) Statistical inference in retrieval
effectiveness evaluation, Information Processing &
Management, 33(4):495-512.

17. Chen, H., Tobun, D.N., Martinez, J., & Schatz, B. (1997).
A Concept Space Approach to Addressing the Vocabulary
Problem in Scientific Information Retrieval: An
Experiment on the Worm Community System. Journal of
the American Society for Information Science.

18. Hofmann, T. (1999). Probabilistic Latent Semantic Indexing.
In Proceedings of the 22st Annual International ACM SIGIR
Conference on Research and Development in Information
Retrieval (SIGIR’99) (pp. 50-57). ACM.

19. Raghavan, V.V., & Wong, S.K.M. (1986). A Critical Analysis
of Vector Space Model for Information Retrieval. Journal of
the American Society for Information Science, 37, 279- 87.

20. Gotlieb, S.D.J, & Avinash, S. (1968). Semantic clustering of

index terms. Journal of the ACM, 15(4), 493-513.

IJFRCSCE | September 2018, Available @ http://www.ijfrcsce.org
97

http://www.jonahharris.com/osdb/mysql/mysql-performance-whitepaper.pdf
http://www.jonahharris.com/osdb/mysql/mysql-performance-whitepaper.pdf

	Query-biased preview over outsourced and encrypted data.

