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Abstract — The pedagogical introduction about the the Monte Carlo technique is presented. Metropolis, Wolff and Heat bath algorithsarebreifly 

discussed. The method to simulate coupled chemical reactions by applying Gillespie algorithm in Simulation of the Lotka-Volterra model is also 

discussed. 
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I. INTRODUCTION 

Metropolis and Ulam[1] suggested a method to solve certain 

type of problems using a statistical approach. They called this 

statistical method as Monte Carlo method. Statisticalsamplingis 

in the use even before the invention of computers.French 

mathematicianComte de Buffon (1707-1788) evaluated the value 

of 𝜋 using random throws of needle of length𝑙on a plane marked 

with some parallel long lines separated by a distance t (see Fig. 

1). Let x is the position of the center of the needle 0 ≤ 𝑥 ≤ 𝑙 and 

𝜃 the angle formed by theneedle with the axis perpendicular to 

the lines  −𝜋/2 ≤ 𝜃 ≤ 𝜋/2 , the probability that the needle 

crosses the lines is given as  
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 Let N total timesthe needle is thrown and N* is the number 

of times it crossesthe lines. We can estimate the probability 

as 𝑃 ≈ 𝑁∗/𝑁. Then using above Eq.  is evaluated as  

𝜋 ≈
2𝑙𝑁

𝑡𝑁∗
  

The result becomes more and more accurate asN 

increases.This is one of the examples of the use of statistical 

sampling. We can efficiently calculate integrals upto three 

dimensions using quadrature methods. The Monte Carlo method 

is however, more efficient than quadrature method for higher 

dimensions. 

An interactive Java applet for the calculation of 𝜋 by 

sampling the ratio of needles crossing thelines over the total 

number of needles is available on internet [2]. 

 
Fig.1: The Buffon's needle: the needle ‘a’ crosses the line, while 

the ‘b’ does not. 

 

Let us consider a function of one variable defined in the 

interval [0, 1]. It is to evaluate the integral by generating N 

random numbers 𝑥1 , 𝑥2 , 𝑥3 … . . 𝑥𝑁in the domain [0, 1].Then 

𝐼 =  𝑓 𝑥 𝑑𝑥 ≈
1

𝑁

1

0

 𝑓 𝑥𝑛 

𝑁
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More generally if the domain of integration is [a,b], above 

summation can be written as  

𝐼 =  𝑓 𝑥 𝑑𝑥 ≈
𝑏 − 𝑎

𝑁

𝑏
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 (2) 

The approximant for a slowly varying function f(x) 

converges very rapidly to theexact value. However, there are 

functions which are negligibly small over a large fraction of 

theintegration domain. Most of the random numbers lie in the 

part of the integrationdomain where the function is small. 

Choosing uniform random number distribution for suchfunctions 

is not a veryefficient procedure asconsiderable computational 

effort usually ends up with large statistical error. The random 

numbersneed to be generated in the partof the integration 

domain where the function f(x) has relatively large value. The 

procedure for generating random numbers in accordance with 

integrand is called importance sampling. 

The random number generated in the domaindepends on a 

functionW(x) which is called a density function. It has the 

following properties W(x) ≥0 in domain [0,1] and 

 𝑊 𝑥 𝑑𝑥 = 1
1

0

 (3) 

Here W(x) dx is the fraction of random numbers generated 

in the interval[x, x+dx]. Let N be the total number of random 

numbers generated, then the separation between two of these 

numbers at position xis given by 1/NW(x). Therefore 

𝐼 =  𝑓 𝑥 𝑑𝑥 ≈
1

𝑁

1
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As an example consider the function 

𝑓 𝑥 =  𝑒−𝑥
2
𝑔 𝑥 in[0, +∞), whereg(x) is slowly varying. It is 

convenient for the Monte Carlo computation of this integral to 
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use a Gaussian random number generator, characterizedby a 

density function 𝑊(𝑥)  =  2/𝜋𝑒−𝑥
2
. One has 

𝐼 =  𝑓 𝑥 𝑑𝑥 ≈
1
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The domain of integration is unbounded here and the 

normalization factor is 2/𝜋 

Therefore it is convenient to choose W(x) so that 𝑓/
𝑊  becomes a slow varying function. Mathematically, we can 

write this condition as the variance 𝜍𝐼 of 𝑓/𝑊 

𝜍𝐼
2 =
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−  𝑓/𝑊   (6) 

Here  𝑓/𝑊 denotes the mean and is the exact value of the 

integral. The random numbers 𝑖 ≠ 𝑗 are independentasthe limit 

𝑁 → ∞ 

𝜍𝐼
2 =

1

𝑁
   𝑓/𝑊 2 −  𝑓/𝑊   (7) 

Thus the error scales as the squared root of the number of 

sampled points  𝜍𝐼~1/ 𝑁 . However it can be reduced by 

minimizing the term in the bracket in Eq.(7). This can be done 

by choosing W such that f/W is a slowly varying 

function.Theoptimal case is the one to reduce f/W to a constant, 

and theterm within the brackets vanishes. But this is not an easy 

task.Thismeans W(x) = 𝛼f(x) and as W(x) is normalized using 

Eq. (3), we get I = 1/. This meanswe already know the value of 

the integral.  

 

II. MONTE CARLO METHODS FOR SYSTEMS IN 

EQUILIBRIUM 

Let a system, in thermal equilibrium with a reservoir at 

temperatureT, is characterized by some discrete number of 

microscopic configurations, say. This discrete case can be then 

generalized to a continuum system, as for instance an interacting 

gas or a liquid.As we know accordingto one of the basic 

principles of statistical mechanics, the probability of finding a 

system in thermodynamicequilibrium in the state is 

proportional to 𝑒−𝛽𝐸𝜇  whereEis the energy of this configuration 

and 𝛽 =
1

𝑘𝐵𝑇
and𝑘𝐵  is the Boltzmann constant.  

Let 𝐴𝜇 is an observable of the system. This can be the energy 

i.e. 𝐴𝜇 = 𝐸𝜇 or any other physical quantity.Then the average 

value of the observable is givenby: 

 𝐴 =
1

𝑍
 𝐴𝜇𝑒

−𝛽𝐸𝜇

𝜇

 (8) 

where 𝑍 =  𝑒−𝛽𝐸𝜇𝜇  is called the partition function. (9) 

Let usdenote the subset of N configurations by 𝜇 . Then the 

thermal average  𝐴  is given by  

 𝐴 ≈
 𝐴𝜇𝑒

−𝛽𝐸𝜇
 𝜇  

 𝑒−𝛽𝐸𝜇 𝜇  

 (10) 

The configuration in  𝜇 is selected, in one way, by 

Randomsampling. Let us consider an Isingsquare 𝐿 × 𝐿 lattice. 

Therefore it has a total of 𝐿2spins. Please see section XIXfor a 

brief introduction on Ising Model. Random sampling procedure 

generatesindependent configurationsby choosing 𝐿2 spinseither 

up or down with equal probability. For L=20, we have 2400 ≈
10120 independent configurations. Present day computers can 

analyse10
10

configurations within a few hours of CPU time. 

Therefore this approach is very inefficient for the calculation 

of  𝐴 . There is another problem with Random sampling 

approach is that the sumin Eq. (8) is dominated by particular 

kind of states. For example in Ising model at low temperatures, 

in the ferromagnetic phase, large majority of the spins point in 

thesame direction. However Random sampling generates 

configurations with small magnetization, as the spins are chosen 

independently from each other. 

Therefore we shall, as in theprevious section, 

generateconfigurations of the system non-uniformly. Let a given 

state  is generated with a probability𝑊𝜇 then Eq. (8) takes the 

form 

 𝐴 ≈
 𝐴𝜇𝑒

−𝛽𝐸𝜇
 𝜇  𝑊𝜇

−1

 𝑒−𝛽𝐸𝜇 𝜇  𝑊𝜇
−1

 (11) 

This is analogous to the Eq. (4). Choosing 𝑊𝜇 = 𝑒−𝛽𝐸𝜇 /𝑍, 

we get 

 𝐴 ≈
 𝐴𝜇 𝜇  

 1 𝜇  
=

1

𝑁
 𝐴𝜇
 𝜇  

 (12) 

`Here N is the number of terms in the sum. It is possible to 

generate states according to the Boltzmann factor 

𝑒𝑥𝑝 −𝛽𝐸𝜇  using the concept of Markov chain as explained 

below?  

III. MARKOV CHAIN 

A Markov chain is a discrete stochastic process of 

transforming the state of system starting from a configuration 

at time t = 0 to new configuration at a time t + t in such a way 

that each transition depends only on the current state of the 

system and not on the previous history or states. This property is 

called as Markov’s property.  

𝜇 → 𝛾 → 𝜈⋯ (13) 

The evolution is stochastic i.e. is governed by 

transitionprobabilities 𝑃 𝜇 → 𝜈 ≥ 0 . The transition 

probabilities  𝑃 𝜇 → 𝜈 satisfy the following normalization 

condition 

 𝑃 𝜇 → 𝜈 

𝜈

= 1 (14) 

Let the probability of system being in the state  is p. Then 

the probability of finding the system at a later timet + tin a state 

isgiven by  

𝑝𝜈 t +  t =  𝑝𝜇
𝜇

 𝑡 𝑃 𝜇 → 𝜈  (15) 

Where the summation is over all states 𝜇 from where the 

transition to state 𝜈 is possible. If the system has N states,𝑝𝜇 ’s 

can be represented by a vector with N components. Using this 

vector of dimensionN, we can rewrite Eq. (15) in the form of a 

vector-matrix product 

𝑝 𝑡 + Δ𝑡 = 𝑃𝑝(𝑡) (16) 

It is obvious that the matrix P will have 

𝑁 × 𝑁 elements 𝑃𝜇𝜈 = 𝑃(𝜈 → 𝜇) .The differential form of 
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Eq.(16) can be written using the limit ∆𝑡 → 0.This form is also 

known as the Master equation(please see Section XX). 

The sum of each column of the matrix isequal to 1 because 

of the normalisation condition in Eq.(14). The vector pis called 

as a stochastic vector if 1) it has non-negative elements 𝑝𝜇 ≥

0 and2) 𝑝𝜇𝜇 = 1. A square matrix with non-negative elements 

and such that the sum ofall columns is equal to 1 is called 

stochastic matrix. The stochasticmatrix, in general, is not 

symmetric i.e. 𝑃(𝜇 → 𝜈) ≠ 𝑃(𝜈 → 𝜇).  

It can be easily shown that if p is a stochastic vector and P a 

stochastic matrix, then  

(1) Ppis a stochasticvector.  

(2) P has at least an eigenvalue = 1.  

(3) All other eigenvalues will be suchthat 𝜆𝑘  <1. 

As an example, consider a system composed of 3 states, 

and . Let the elements of the probability matrixare given by 

P(𝜇 → 𝜈) = a, P(𝜈 → 𝛾 ) =P(𝛾 → 𝜈) = b (a, b <1). Rest of the 

elements of P corresponding to processes  𝜇 → 𝛾 , 𝛾 → 𝜇 , 𝜈 →
𝜇 are zero. Then the stochastic matrix P is given by 

𝑃 =  
1 − 𝑎 0 0
𝑎 1 − 𝑏 𝑏
0 𝑏 1 − 𝑏

  (17) 

It is evident that eigenvalues are𝜆1 = 1, 𝜆2 = 1 − 𝑎and𝜆3 =
1 − 2𝑏. Therefore the matrix is in agreement with the previous 

proposition. An eigenvalue is equal to 𝜆1 = 1 ,while the two 

others  𝜆2 ,  𝜆3 <1. 

The eigenvector associated to 𝜆1 = 1is𝜔 =  0,
1

2
,

1

2
 . This is 

a stochastic vector. This eigenvector describes a stationary state 

of the system i.e. theprobability of finding the system in any of 

the possible configurations does not evolvewith time as from Eq. 

(16) follows 

𝜔 𝑡 + Δ𝑡 = 𝑃𝜔 𝑡 = 𝜔(𝑡) (18) 

Therefore, given an initial state, the system will evolve 

towards astationary state in which it spends half of the time in  

and half in. Here,𝜔𝜇 = 0, i.e the  probability finding thesystem 

in the state  is zero because system has evolved to final states 

and. 

 

IV. ERGODICITY 

This is an important property of the Monte Carlo 

procedures. The procedure adopted or the algorithm should be 

such that any state of the system should be reachable from any 

other state. The transition rates may be zero between two 

arbitrary states  and but there should exist at least a 

connecting path of transitionwith non-zero rates. 

𝜇 → 𝛾 → 𝛿 → 𝜌 → ⋯ → 𝜈 (19) 

The stochastic process given in the above example is non-

ergodicas𝑃  → 𝜇 = 𝑃 𝜈 → 𝜇 = 0. Therefore it is impossible 

to reach the state fromany other state of the system. 

 

V. DETAILED BALANCE 

The inverse problem is to generate a stochastic dynamics 

with a stationary state  𝜔 . A given stochastic vector 𝜔 is 

stationary if it is eigenvector of the generator of dynamicsP with 

eigenvalue equal to1, which means 

Pω = ω 

Or𝜔𝜈 =  𝜔𝜇𝑃 𝜇 → 𝜈 

𝜇

 (20) 

Using Eq. (14) we can rewrite this condition as 

 𝜔𝜈𝑃 𝜈 → 𝜇 

𝜇

=  𝜔𝜇𝑃 𝜇 → 𝜈 

𝜇

 (21) 

 This is known as the global balance condition. The 

condition states that 𝜔 is stationary if the total probabilityof 

transition from  toany configurationof the system 

( 𝜔𝑣𝑃 𝜈 → 𝜇 𝜇 is equal to the probability of the transition 

 𝜔𝜇𝑃 𝜇 → 𝜈 𝜇 from any other configurationto). 

Therefore if the probabilities satisfy the following condition, 

called the detailed balance condition 

𝜔𝜈𝑃 𝜈 → 𝜇 = 𝜔𝜇𝑃 𝜇 → 𝜈  (22) 

then Eq. (21) necessarily holds. However the opposite may not 

be true that Eq. (21) is valid but Eq. (22) is violated. It is easier 

to implement detailed balance condition. 

Let 𝜔 =
1

6
 1 4 1 be the stationary state of a system with 

three states. Using detailed balance condition (Eq. (22)) we can 

write: 
𝑃 1→2 

𝑃 2→1 
=

𝜔2

𝜔1
= 4

𝑃 3→2 

𝑃 2→3 
=

𝜔2

𝜔3
= 4 

𝑃 1→3 

𝑃 3→1 
=

𝜔3

𝜔1
= 1 (23) 

Further as we know the sums of all columns must add up 

toone. One possible solution is 

𝑃 =
1

5
 

0 1 1
4 3 4
1 1 0

  (24) 

The matrix P has 𝜔 as its eigenvector with eigenvalue equal 

to 1 i.e. 𝑃𝜔 = 𝜔. 

The detailed balance condition for dynamics to Boltzmann 

distribution 𝜔𝜇 = 𝑒𝑥𝑝 −𝛽𝐸𝜇  /𝑍 becomes 

𝑃(𝜈 → 𝜇)

𝑃(𝜇 → 𝜈)
= 𝑒−𝛽 𝐸𝜇−𝐸𝜈   (25) 

Therefore there is freedom on the specific choice of 

transition probabilities satisfying detailed balance as it only fixes 

the ratio of transition probabilities as seen in the above 

examples. It is therefore simple to implement in practice. 

 

VI. THE METROPOLIS ALGORITHM 

 Therefore the stochastic Markov chain needs to fulfill the 

conditions of Ergodicity and Detailed balance in order to 

converge to thermodynamic equilibrium. Theprobabilitiesshould 

also satisfy the normalization condition of Eq. (14). Setting 𝜈 =
𝜇 in Eq. (22) we get 1 = 1, i.e. the detailed balance condition is 

alwayssatisfied for any choice of𝑃(𝜇 → 𝜇)which means for an 

absence of transition and also the normalization condition is also 

satisfied for the absence of transition i.e. a stationary state case. 

 Therefore the optimal choice for the quick convergence to 

equilibriumrequires 𝑃 𝜇 →  beingas large as possible. 

However it should satisfy the conditions lay down by Eqs. (22) 

and (14).  

 In practice we split the probability or rates of transition as 

follows: 

𝑃 𝜇 →  = 𝑔(𝜇 → )𝐴(𝜇 → ) (26) 
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Here𝑔(𝜇 → )specifies which states are generated by the 

algorithm from a given initial state and is called the selection 

probability.𝐴 𝜇 →  is the fraction of times the actualtransition 

takes place and is called the acceptance ratio 

A new state is generated byselecting a spin at random out of 

a total of M spins in the lattice in Ising model. Therefore the 

selection probability is 𝑔 𝜇 →  = 1/𝑀 ifthe two states differ 

by a single spin, while 𝑔 𝜇 →  = 0 otherwise.The acceptance 

ratio in Metropolis algorithm is given by 

𝐴 𝜇 →  =  𝑒−𝛽 𝐸𝜈−𝐸𝜇               𝑖𝑓𝐸𝜈>𝐸𝜇

              1                otherwise
  (27) 

Therefore if an update selected according to the rule defined 

by 𝑔 𝜇 →  leads to alowering of the energy, it is always 

accepted. Otherwise it is accepted with a probability 

proportional to 𝑒−𝛽 𝐸𝜈−𝐸𝜇  which is the Boltzmann factor 

associated to the energy difference between thefinal and initial 

state. 

 Itiseasy to show that the Metropolis acceptance ratio (Eq. 

(27)) satisfies detailed balance(Eq.(22)) for any symmetric 

choice of selection probability 𝑔 𝜇 →  = 𝑔  → 𝜇  
 

VII. EQUILIBRATION 

The dynamics of the system converges to equilibrium state 

provided the conditions of Ergodicity and detailed balance of 

Markov’s chain are satisfied.The initial state is chosen at random 

and it takes the system to reach the equilibrium state in small 

time. 

 
Figure 2: Configurations of a100 × 100  Ising lattice at T = 

0.88Tc obtained from the Metropolis algorithm at different time 

steps. 

The equilibration time 𝜏𝑒𝑞 in a simulation is the time 

required by the system to reach an equilibrium state.Time in a 

simulation is usually measured in terms of attempted flips per 

lattice site.It enables us to compare two simulations of lattices of 

different sizes. A physical quantity(like the total magnetization 

in an Ising lattice)is plotted as function of time. This quantity 

starts fluctuating around a constant value as the thermal 

equilibrium is reached. Fig.2 shows the Metropolis algorithm at 

different time steps. The initial state of the system configuration 

is shown in the figure at the top left, followed by the state at 

10
4
Monte Carlo steps in bottom left, then the state at 10

5
MC 

steps at Top right and in the end near the equilibrium state after 

10
6
MC steps in the Bottom right. The lattice size is 100x100, 

therefore ifwe measure the time in sweepse.g. MC steps per spin, 

the times shown corresponds to 1,10 and 100 sweeps. 

Differentsnapshots of configurations of the Ising model are 

obtained at different simulation times. The topleft figure is the 

random initial configuration. As the temperature is below the 

criticalone the spins tend to align (ferromagnetic phase). Larger 

andlarger domains with aligned spins are formed in the course of 

time, until these domainsreach a characteristic size. This size 

does not change further.The magnetization, as shown in Fig.3, 

reaches an average value after about t = 3000 Monte Carlo steps 

per lattice site. Time in simulation is measured in terms of 

attempted flips per Lattice site so that a 

comparisonofsimulations of two lattices of different sizes can be 

done. 

 

VIII. CORRELATION TIME 

Markov chain should gothrougha sufficiently large series of 

independent statesfor a minimum error in the average of a 

physical quantity as in Eq. (12). A consistent average is the basic 

requirement for an efficient simulation process. For example, a 

single flip at each time step in the Metropolis algorithm 

discussed above for Ising model gives excellent results. 

Therefore the change in magnetization 𝑚 =
1

𝑁
 𝑠𝑖𝑖  (28) 

for a Lattice with N spins in Ising model at each Monte Carlo 

step is of the order of 1/N. This means there is strong correlation 

between the two consecutive steps or configurations. Therefore 

the loss of this correlation requires many steps. 

This correlation is measured in terms of what is known as 

the correlation time.  

Let us suppose that wehave let the simulation run for a 

sufficient time so to have reached equilibrium. Allthe physical 

quantities fluctuate around their average equilibrium values.  

 
Figure 3: Magnetization of a 100 × 100  Ising model in the 

ferromagnetic phase asa function of the simulation time. In the 

main frame two random differentinitialconfigurations were 

simulated at T = 0.98Tc. After about 3000 Monte Carlo 

sweepsthe two curves converge to the same average value. The 

solid line is the exact value ofthe magnetization of the 2d Ising 

model. Inset: A similar run for a lower temperatureT = 

0.8333Tc. Note that the equilibrium magnetization is reached 

faster (𝜏𝑒𝑞≈1000)compared to the T = 0.98Tccase. Fluctuations 

around the average magnetization are also much smaller. 
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This fluctuation is measured in terms of an autocorrelation 

function[7] 

𝜒 𝑡 =  𝑑𝑡 ′  𝑚 𝑡 ′ −  𝑚   𝑚 𝑡 ′ + 𝑡 −  𝑚   (29) 

Here m(t) is the magnetization of the Ising model at time 

t,  𝑚  is the average magnetization value over all values 

measuredduring the Monte Carlo run. Here we have chosenthe 

property of magnetisation for Ising model. HoweverEq.(29) is 

more general and is applicable to any other physical 

quantity.Howeverfor a very small value of t, 𝑚 𝑡 ′ + 𝑡 ≈

𝑚 𝑡 ′ and the integrand in above equation will have a positive 

value, that is 𝜒 𝑡 > 0. However 𝜒 𝑡  is expected to decay to 

zero after sufficiently long time because 𝑚 𝑡 ′ + 𝑡  becomes 

uncorrelated to 𝑚 𝑡 ′ . Thefluctuationsinmareabove or below its 

average value at times 𝑡 ′ + 𝑡 . The positive and negative 

contributions will cancel on integration with respect to dt’ and 

therefore integral 𝜒 𝑡 will vanish. This is because integration is 

the area under the curve and the net area for an uncorrelated 

region of the curve with both positive and negative values add 

up to zero. This happensasymptotically as  

𝜒 𝑡 ~𝑒−𝑡/𝜏  (30) 

The dynamics describedby the Markov chain (Eq. (15)) 

justifies this exponential behavior. Let vector p(0) describes the 

initialconfiguration at time t = 0. This can be written in terms of 

eigenvectors of Pas𝑝 =  𝑐𝑘𝜔
 𝑘 

𝑘 . The state vector 𝑝 𝑡 at a 

later time 𝑡 =  𝑛Δ𝑡 is obtained by using Eq.(15) by multiplying 

with 𝑃𝑛  i.e. 

𝑝 𝑡 = 𝑃𝑛𝑝 0 =  𝑐𝑘𝜆𝑘
𝑛𝜔 𝑘 

𝑘

 (31) 

where𝜆𝑘are the corresponding eigenvalues. 

Reconsidering the Ising model example, let mis the 

magnetization and 𝑚𝜇 is the value of the observable in the state, 

its average value over a state given by the vector p will be  

𝑚 =  𝑚𝜇

𝜇

𝑝𝜇 = 𝑀. 𝑝  (32) 

As  𝑚𝜇𝜇 𝑝𝜇 = 𝑀. 𝑝 the scalar product of p with M. 

Now substituting from Eq.(31) weget 

 

𝑚 𝑡 = 𝑀.𝜔 1 +  𝑐𝑘𝜆𝑘
𝑛𝑀.𝜔 𝑘 

𝑘>1

 

= 𝑚 +  𝑐𝑘𝜆𝑘
𝑛𝑀𝑘𝑘>1  

(33) 

As we know the magnetization in the stationary state is 

equal to  𝑚 and the eigenvalue for the stationary state is one i.e.  

𝜆1
𝑛 = 1 . Here we have used  𝑀𝑘 = 𝑀.𝜔 𝑘 . As 𝑛 =

𝑡

Δ𝑡
and 

defining relaxation times 

𝜏𝑘 = −
1

log 𝜆𝑘  
 (34) 

We can write the above equation as 

𝑚 𝑡 −  𝑚 =  𝑐𝑘𝑀𝑘𝑒
−𝑡/𝜏𝑘

𝑘>1

 (35) 

This is true not only for the Ising model and the properties 

of the magnetization, but Eq. (29) is applicable to all systems. In 

general we find  

𝜒 𝑡 =  𝐴𝑒−𝑡/𝜏1 +  𝐵𝑒−𝑡/𝜏2 + ⋯ (36) 

Therefore 𝜒 𝑡  decays exponentially as written in Eq.(30). 

The Eq.(36), therefore is more general and appropriate for fitting 

in simulations. 

As we see in above example, the Eigen values of stochastic 

matrix  

𝑃 =  
1 − 𝑎 0 0
𝑎 1 − 𝑏 𝑏
0 𝑏 1 − 𝑏

   

are 𝜆1 = 1 , 𝜆2 = 1 − 𝑎 and 𝜆3 = 1 − 2𝑏 . The 

stationarystateis𝜐 1 =  0,
1

2
,

1

2
 . The two otherEigenvectors are 

𝜐 2 =  −𝑏, 𝑏 − 𝑎, 𝑎 and 𝜐 3 =  0, 1, −1 .It can be verified 

that the sum of the elements of thevectors𝜐 2 and 𝜐 3 is zero. It 

can be shown that it is a general property of any 

stochasticmatrix? Let us now assume that the system is initially 

instate𝑝 =  
1

3
,

1

3
,

1

3
 . Thelinear combination 

𝑝 =  𝑐𝑘

3

𝑘=1

𝑣(𝑘) = 𝑣(1) −
1

3𝑏
𝑣 2 +  

1

6
−

𝑎

3𝑏
 𝑣 3  (37) 

Since there is always an equilibrium state we expect for any 

stochastic matrixc1= 1. 

The data for averaging as taken in Eq.(12) should be 

determined at time intervals larger than the autocorrelation time 

. However, it significantly reduces the number of data points. 

Therefore, one should take data at fixed time intervals 

T.Thestandard deviation on the mean of nexperimental points, 

taken at uncorrelated intervals, is given by [3] 

𝜍 =  
1

𝑛 − 1
 𝑚2    − 𝑚 2  (38) 

The same measurements taken [4] at intervals ∆T yields 

𝜍 =  
1 + 2𝜏/ΔT

𝑛 − 1
 𝑚2    − 𝑚 2  (39) 

It can be seen that this equation reduces to Eq. (38)forΔT ≫
τ. 

 

IX. CRITICAL SLOWING DOWN: THE DYNAMICAL 

EXPONENT 

Various physical properties of a system in equilibrium show 

power law singularities near the vicinity of the critical point. 

These laws are governed by some critical exponents. As an 

example, the magnetization vanishes near the critical 

temperature in Ising model, following a power law with a critical 

exponent  

𝑚~ 
𝑇𝑐 − 𝑇

𝑇𝑐
 
𝛽

 (40) 

 Another example, the specific heat diverges as we 

approach the critical temperature following a power law with 

critical exponent  

𝑐~  
𝑇 − 𝑇𝑐
𝑇𝑐

 
−𝛼

 (41) 

As we know the spins at a distance 𝑟  are correlated for 

temperatures above and below Tc as  
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 𝑠𝛿   𝑠𝛿   +𝑟  −  𝑠𝛿     𝑠𝛿   +𝑟  ~𝑒
− 𝑟  /𝜉  (42) 

 Here 𝜉  is the correlation length. This quantity also 

diverges as we approach Tc 

𝜉~  
𝑇 − 𝑇𝑐
𝑇𝑐

 
−𝜈

 (43) 

Similar is the case for susceptibility with a critical 

exponent𝛾 . The values of 𝛼, 𝛽, 𝜈 and 𝛾 are independent of the 

type of lattice considered (e.g. triangular, squared . . .) but 

depend on the dimensionality of the model. In the 2d Ising 

model one has = 0 and therefore a logarithmic singularity. Also 

for this model 𝛽 =
1

8
, 𝜈 = 1 and 𝛾 = 7/4. 

The typical size of cluster of spins pointing in the same 

direction (Fig.4) is denoted by the correlation length . As the 

temperature of the algorithm approaches Tc, the size of the 

clusters increases and spins become increasingly coupled to each 

other. It becomes impossible to flip a single spin out of this large 

cluster. This is because neighboring numerous spins which are 

coupled to this spin, resist this change. Therefore the Metropolis 

Monte Carlo algorithm suffers from a so called critical slowing 

down near the critical temperature Tc. Thereforeit affects the 

correlation time which diverges as we approach the critical 

point Tc 

 ~  
𝑇 − 𝑇𝑐
𝑇𝑐

 
−𝑧𝜈

 (44) 

 This algorithm dependent exponent Z is called the 

dynamical exponent. Its value indicates how the correlation time 

of the algorithm behaves near the critical point. Optimal 

performance of an algorithm near Tc indicates a small value of 

Z. 

 As 𝑇𝑐  is known for a 2d Ising model, we can evaluate Z by 

setting  𝑇 = 𝑇𝑐 . As we know for a finite lattice of Length L the 

correlation length.𝜉~𝑳and is therefore non-diverging.Therefore 

using Eq.(43)  and  (44) we get 

𝜏~𝜉𝑧~𝑳𝒛 (45) 

Metropolis algorithm for 2d Ising model gives 𝑍 ≈ 2.17. 

The critical slowing down is visible also from the runshown in 

Fig.3. The average magnetization value fluctuates in 

correlatedfashionfor longer times at 𝑇 = 0.98𝑇𝑐 as compared 

to𝑇 = 0.833𝑇𝑐 . 

 
Figure 4:Metropolis algorithm typical spin configurations (top) 

and magnetization vs. time plots (bottom) for Ising model. 

Bigger clusters on left are for temperature T=2.5 which isnear 

Tc≈ 2.26.They have an increased autocorrelation time. Smaller 

clusters are observed for T=5.0 in the fig. on right. 

 

X. CLUSTER ALGORITHMS: THEWOLFF 

ALGORITHM FOR THE ISING MODEL 

U Wolff in 1989 [5] introduced a cluster based 

algorithm which overcomes the problem of critical slow down as 

discussed above.It is based on the concept that the whole cluster 

of spins is flipped in one move unlike a single spin as in 

Metropolis algorithm. There are more such cluster based 

algorithms, we are not discussing here  

Consider a single spin at random, called the seed spin. Now 

add all neighboring spins with the same sign as the seed spinin 

the cluster. The spins are added with a probability Padd. The 

probability of their exclusion is 1-Padd. Spins of opposite 

direction or sign than the seed spin are excluded. 

 
Figure 5: A cluster in the Wolff algorithm is composed of 

connectedidentical spins. The boundary of the cluster is 

indicated as a dashed line in the example. Thespins encircled are 

kept out of the cluster. 

The algorithm should fulfillthe detailed balance condition. 

Let two states  and  differ from each other by the flip of a 

single cluster. The selection probabilities obviously are 𝑔 𝜇 →
𝜈 ∝  1 − 𝑃𝑎𝑑𝑑  

𝑚 and𝑔 𝜈 → 𝜇 ∝  1 − 𝑃𝑎𝑑𝑑  
𝑛 where m and n 

are the number of bonds between a spin in the cluster and a spin 

outside the cluster. 

The detailed balance condition reads: 
𝑃 𝜈 → 𝜇 

𝑃 𝜇 → 𝜈 
=
𝑔 𝜈 → 𝜇 𝐴 𝜈 → 𝜇 

𝑔 𝜇 → 𝜈 𝐴 𝜇 → 𝜈 

=  1 − 𝑃𝑎𝑑𝑑  
𝑛−𝑚

𝐴 𝜈 → 𝜇 

𝐴 𝜇 → 𝜈 

= 𝑒−𝛽 𝐸𝜇−𝐸𝜈  

(46) 

 The energy difference for Ising model is 𝐸𝜇 − 𝐸𝜈 =
 𝑛 − 𝑚 2𝐽 . Therefore from above Eq., we have the detailed 

balance condition as 
𝐴 𝜈 → 𝜇 

𝐴 𝜇 → 𝜈 
=   1 − 𝑃𝑎𝑑𝑑  𝑒

2𝛽𝐽  
𝑚−𝑛

 (47) 

Choosing  

𝑃𝑎𝑑𝑑 = 1 − 𝑒2𝛽𝐽  
 

(48) 

 We get 𝐴 𝜈 → 𝜇 = 𝐴 𝜇 → 𝜈  Let us choose the 

acceptance ratios 𝐴 𝜇 → 𝜈 = 1. This means flipping of the 

cluster is always accepted. However 𝑃𝑎𝑑𝑑  as clear from the 

above assumption in Eq. (48) is temperature dependent. At high 

temperatures 𝛽 → 0 and so we get 𝑃𝑎𝑑𝑑 → 0 i.e. clusters are very 

small, consisting of a single seed spin only.Therefore the Wolff 

algorithm becomes a single spin flipping algorithm at high 
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temperatures. Also at very low temperatures 𝑃𝑎𝑑𝑑 → 0 as 𝛽 → 0. 

Therefore clusters are large almost of the size of the lattice.That 

means system flips betweentotal positive and total negative 

magnetization values as all spins of the lattice are either up or 

down. Therefore Wolff algorithm is not successful at very high 

and at very low temperatures. However Metropolisalgorithm 

works better at extreme temperatures.Finally let us consider 

cluster flip 𝜏𝑓𝑙𝑖𝑝 as a unit of time for the algorithm but size of the 

Wolff cluster is different at different temperatures. 

Therefore𝜏𝑓𝑙𝑖𝑝  is not a reasonable unit of time. Then the time 

unit for a d dimensional lattice of size L can be defined as  

𝜏 = 𝜏𝑓𝑙𝑖𝑝
 𝑛 

𝐿𝑑
 (49) 

Here  𝑛  is the average number of spins in the cluster. For 

low temperatures cluster is as big as the lattice itself and so 

 𝑛 → 𝐿𝑑 , and from above Eq.   𝜏 ≈ 𝜏𝑓𝑙𝑖𝑝 . This is similar to the 

time unit of Metropolis algorithm. Further, the correlation time 

at the critical point in this unit scales as a power law of the 

lattice size. We get Z≈0.25 for a two dimensional Ising model. 

Therefore the problem of critical slowing down has been 

successfully solved by the Wolff algorithm. 

 
Figure 6: Acceptance ratios as functions of E, where  is the 

inverse temperature andEthe energy difference, for the 

Metropolis (solid line)and Heat Bath algorithms(dashed line). 

 

XI. THE HEAT BATH ALGORITHM 

It is another single spin flip algorithm as it also satisfies the 

condition of detailed balance (Eq. (22)).The heat bath algorithm 

for the Ising model has thefollowing form: 

𝐴 𝜇 → 𝜈 =
𝑒−𝛽𝐸𝜈

𝑒−𝛽𝐸𝜈 + 𝑒−𝛽𝐸𝜇
=

𝑒−𝛽Δ𝐸

𝑒−𝛽ΔΕ + 1
 (50) 

whereΔΕ = 𝐸𝜈 − 𝐸𝜇 . Comparing with Eq.(27), we see this 

acceptance ratio matches that of theMetropolis algorithm in the 

two limiting cases 𝛽Δ𝐸 → −∞, where 𝐴 → 1  and for E large 

and positive which gives 𝐴 ≈ 𝑒−𝛽ΔΕ . However the two 

algorithms differ for Δ𝐸  = 0. The Metropolis acceptance ratio 

for Δ𝐸 = 0 is A = 1. On the other hand for heat bath it is 1/2. 

This means the acceptance of the flip that does not vary energy 

is half in heat bath algorithm as compared to that in 

theMetropolis move. 

The Heat Bath algorithm is not very efficient forMonteCarlo 

simulation of the Ising model however it is a good algorithm 

forother models like Potts model (Please see section (XIX) for 

Potts model). In this model the spins can take q different values, 

as compared to the Ising case in which𝑠𝑖 = ±1.  

 

 
Figure 7: (Top) Comparison of evolution of Metropolis 

algorithm in the left column and Heat Bath algorithm in the right 

column for configurations of a 20 × 20 Lattice 10-state Potts 

model.The energy vs. time plots in the bottom shows that the 

Heat Bath algorithm is more efficient than Metropolis forlarge 

values of q (faster equilibration).  

This will be generalization of Eq. (50) to a q state case. 

Figure 7 shows comparison of Metropolis algorithm andthe Heat 

Bath algorithm through some snapshots ofconfigurationsfor q = 

10 case. The simulated temperature is taken very low, for a 

better comparison of two algorithms so 

thatinequilibriumconfiguration almost all spins are aligned to 

one of the q-values. We can see that theHeat Bath algorithm 

evolves more rapidly towards the configuration with all 

alignedspins. 

 
Figure 8:Typical interface configurations in the Ising model at 

two different temperaturesT = 0.5 Tc on the left whereas T = 0.8 

Tcon the rightwith Non-local Kawasaki dynamics. 

 

XII. CONSERVED ORDER PARAMETER ISING MODEL 

Consider Ising model with two ferromagnetic phases, below 

the critical temperature T<Tcwith average magnetization 

±𝑚 𝑇 which approaches unity as 𝑇 → 0 .It is possible that 

lattice possess two identical symmetrical parts with spins up on 

one side and spins down in the other. A single spin flip 

algorithm like the Metropolis algorithm will choose any one of 

these states with 50% chances and will end up in one single 

phase. Therefore we need some different algorithm to study the 

interface between the two ferromagnetic phases.TheKawasaki 

algorithm is found useful for such situations. The principle of 

Kawasaki algorithm is similar to spin flip algorithmswith the 

only difference that it selectpairs of neighboring spins and swaps 
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them. The acceptance ratio followsthestandard Metropolis rule 

of Eq. (27). We are only interchanging two spins witheach other, 

therefore the total magnetization 

𝑀 =  𝑠𝑖
𝑖

 (51) 

Isunchanged.The spins in Kawasaki dynamics move diffusively 

throughout the lattice. Therefore system takes long time before 

the equilibration is reached. Further improvement is done in the 

algorithm by choosing far away spins for swapping.Therefore 

lists of locations of up spins and another list of locations of 

down spins is prepared. The spins to be swapped are then chosen 

from two lists with aprobability independent of their physical 

position in the lattice. The non-local moves lead to a faster 

equilibration. The acceptance ratio is same as given in Eq. 

(27).Pairs of equal spins are avoided as we are selecting a plus 

and a minus spin therefore it saves computer time. 

 

XIII. MONTE CARLO IN CONTINUOUS TIME 

There are systems with a defined Markov chain such that 

thesystem remains locked into certain states for long. For 

example,  

𝜇 → 𝛾 → 𝛾 → ⋯ → 𝛾 → 𝜈⋯⋯ (52) 

Therefore the dynamics of the system becomes very slow. 

This problem can be overcome by evaluating𝑇𝛾 , the average time 

spent into a certain state  and putting an upper limit on the 

system for this variable. This is the same procedure the 

continuous time Monte Carlo method adopts to 

evaluate𝑇𝛾 ?Consider the probability for transition into 𝛾  state 

itself i.e. 𝛾 → 𝛾 i.e. 𝑝 = 𝑃 𝛾 → 𝛾  and then 𝑞 = 1 − 𝑝 =
 𝑃 𝛾 → 𝜈 𝜈≠𝛾 (we have used the normalization of Eq. (14)). 

Then we have  

𝑇𝛾 = Δ𝑡 𝑛𝑝𝑛𝑞

+∞

𝑛=0

=  ∆𝑡
𝑝

𝑞
≈

∆𝑡

 𝑃 𝛾 → 𝜈 𝜈≠𝛾

 (53) 

wheret is the discrete time unit of the Markov chain and 

where we have used 𝑞 ≪ 𝑝 ≈ 1.The next step after evaluating 

𝑇𝛾 to force the system to use another state say the probability 

for this transition is  

𝑔 𝛾 → 𝜇 =
𝑃 𝛾 → 𝜇 

 𝑃 𝛾 → 𝜈 𝜈≠𝛾

 (54) 

However the shortcoming of this method is that for 

evaluating 𝑇𝛾and 𝑔 𝛾 → 𝜇 , we need to evaluate all thetransition 

probabilities 𝑃 𝛾 → 𝜈 . This is done by choosing appropriate 

transitionprobabilities, the continuous time method can be 

implemented in an efficient way (see for example Ref.[3])  

 

XIV. CONTINUOUS SYSTEMS: LENNARD-JONES 

FLUIDS 

Monte Carlo simulations can be helpful to study 

classicalfluids, for example Lennard-Jones fluid system. Let 

certain volume V of the fluid has N particles at a temperatureT. 

Then as we know, Lennard –Jones pairwise interaction potential 

is given by 

𝑉𝐿𝐽  𝑟 = 4𝜀   
𝜍

𝑟
 

12

−  
𝜍

𝑟
 

6

  (55) 

Here 𝜀 is the minimum of the potential and 𝜍the distancefor 

zero potential.First term in the bracket is a long-range attraction 

term decaying as 
1

𝑟6  and arises because of dispersive Van der 

Waals forces due to fluctuating dipoles.The second term is a 

short range repulsion term diverging at short distances as 
1

𝑟12 .This short range term is due to Pauli exclusion principle.It is 

the square of the attraction term and is just chosensobecause of 

ease of the computation 

 
Figure 9:The particle selection in Monte Carlo algorithm for a 

continuous fluid system is random and a move to a new position 

is attempted. The acceptance ratio of new configuration is 

according to the Metropolis rule. 

. 

The partition function of the system is given as an integral 

over positions 𝑟𝑖   and momenta 𝑝𝑖     of all as: 

𝑍 =  𝑑𝑟1    … . 𝑑𝑟𝑁    𝑑𝑝1    … . 𝑑𝑝𝑁     𝑒
−𝛽  

𝑝1
2

2𝑚
+𝑉 𝑟1     …..𝑟𝑁       𝑖  

 (56) 

where𝑟𝑖    and 𝑝𝑖     for i = 1,2, …… . . Nare the position and the 

momentum co-ordinates of the N particles.The quantity between 

the parenthesis in exponential is the total energy of the system. 

Then the average value of an observable 𝑟1    … . 𝑟𝑁    , 𝑝1    … . 𝑝𝑁      , a 

function of position and momentum co-ordinates is given by: 
 𝐴 

=
1

𝑍
 𝑑𝑟1    … . 𝑑𝑟𝑁    𝑑𝑝1    … . 𝑑𝑝𝑁     𝐴 𝑟1    … . 𝑟𝑁    , 𝑝1    … . 𝑝𝑁      𝑒

−𝛽  
𝑝1

2

2𝑚
+𝑉 𝑟1     …..𝑟𝑁       𝑖  

 
(57) 

This equation is the same as Eq. (8). Difference is only that 

A is function of position and momentum coordinates and the 

summation has been changed to integral. The functions of 

momenta being Gaussian integrals can be easily integrated. The 

integration of position-dependent quantities is not so easy and 

therefore we need numerical simulation methods like Monte 

Carlo. Lennard-Jones fluid potential is a sum of pair potentials 

𝑉 𝑟1    … . 𝑟𝑁     =  𝑉𝐿𝐽  𝑟𝑖𝑗  

𝑖<𝑗

 (58) 

Here 𝑟𝑖𝑗 =  𝑟𝑖   − 𝑟𝑗    . This computationis not easy.As an 

example to evaluate average distance  𝑟1    − 𝑟2      between two 

particles,integrationover terms of type 𝑒𝑥𝑝 − 𝑉𝐿𝐽  𝑟12 +

𝑉𝐿𝐽  𝑟13 + 𝑉𝐿𝐽  𝑟14 …  /𝑘𝐵𝑇 is required. It is really a tough task. 

The particle is selected atrandomand a move is attempted 

𝑟𝑖   → 𝑟𝑖
′    (see Fig. 9) in order to perform Monte Carlo simulation 

on this problem. The shift of the coordinates 𝛿𝑥 , 𝛿𝑦and𝛿𝑧from a 

uniform distribution on [-∆, ∆] is selected. Here ∆ is of the order 

of the inter particle distance.  The evaluation of acceptance ratio 
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requires the computation of the energy difference between new 

and old configuration. 

Let a particle i is moved, the energy difference is given as  

∆𝐸 =   𝑉𝐿𝐽  𝑟
′
𝑖𝑗  −𝑉𝐿𝐽  𝑟𝑖𝑗   

𝑗≠𝑖

 (59) 

Here𝑟′ 𝑖𝑗 =  𝑟′ 𝑖     − 𝑟𝑗    .  

The acceptance ratio is given by 

𝐴  𝑟𝑖   → 𝑟𝑖
′     =  

1                           if ∆𝐸 ≤ 0
exp −∆𝐸/𝑘𝐵𝑇  if ∆𝐸 > 0

 and 

which is same as the Metropolis Algorithm. Long range 

interaction demands summing over all pairs of particles, which 

meansa sum of 𝑁(𝑁 − 1)/2 terms. This is a large simulation 

work with large number of particles.Therefore the range of the 

interaction is truncated as in the following expression 

𝑉𝑡𝑟𝑢𝑛𝑐  𝑟 =  
𝑉𝐿𝐽  𝑟 𝑖𝑓𝑟 < 𝑟𝑐

      0               𝑜𝑡𝑕𝑒𝑟𝑤𝑖𝑠𝑒
  (60) 

After this modification in the potential only those particles 

need to be considered which fall within this radius 𝑟𝑐  called the 

truncation radius (typically𝑟𝑐 ≈ 2 − 3𝜍). 

 

XV. NON- EQUILIBRIUM SYSTEMS 

An algorithm needs to satisfy the conditions of 

ErgodicityandDetailed Balance. As seen in theIsing model there 

are many algorithms for which these conditions are satisfied. 

These are single spin flip algorithms like Metropolis, heat bath . 

. .  or are cluster flip type like Wolffalgorithm. However these 

algorithms are for systems which converge to equilibrium. There 

can be certain non-equilibrium conditions that one might try to 

study. But unfortunately there is not such a large choice of 

algorithms. However the procedure to study non-equilibrium 

conditions is similar. We build a Markov chain of states with 

certain transition probabilities like 𝑃(𝜇 → 𝜈). Time step ∆t is 

real time and not of an algorithmic type any longer. As for 

example, the cluster algorithms are not proper to study the 

dynamical properties in Isingmodel. It isnot a realistic dynamics 

which shows the buildup of large clusters at low temperatures 

and single flip situation at high temperatures. Similar is the case 

with non-local Kawasaki like dynamics which involve the 

swapping of opposite spins with rates which are independent of 

their physical locations. Conclusively we need local algorithms 

totally different from the equilibrium mechanics.Algorithms of 

Non-equilibrium systems do not rely on physical parameters 

likepartitionfunctions, free energies etc.Therefore we need to 

study these systems separately. Following is an example of 

Monte Carlo simulations applied to non-equilibriumsystems. 

 

XVI. COUPLED CHEMICAL REACTIONS 

The coupled chemical reactions, is a non-equilibrium 

system one may like to study. The reactions may be written in 

the following general framework  

𝑚1𝐴1 + 𝑚2𝐴2 + 𝑚3𝐴3 + ⋯𝑚𝑟𝐴𝑟
𝑘𝑖
→𝑛1𝐴1 + 𝑛2𝐴2 + 𝑛3𝐴3 + ⋯𝑛𝑟𝐴𝑟  

(61) 

Here 𝑚𝑖 , 𝑛𝑖  are stoichiometric coefficients and 𝐴𝑖  are 

different kind of particles i.e. molecules, atoms or ions. Let 𝑘𝑖𝑡is 

the probability the reactant particles react. Let the time interval 

for reaction is [t,t+dt]. The reaction may be reversible or 

irreversible. If it is reversible, there will be a forward rate and 

backward rate.  

The Lotka-Volterra model, which deals with these kinds of 

reactions, is also called as predator-prey model.Lets𝐴1(the prey) 

and 𝐴2(the predator) be two particles which react as below: 

𝐴1

𝑘1
→2𝐴1  

𝐴1 + 𝐴2

𝑘2
→2𝐴2  

𝐴2

𝑘3
→∅ (62) 

Here𝑘𝑖 , with i = 1,2, 3 are the rates for each reaction. 

The system is homogenous, so that spatial effects are 

negligible. The diffusion is fast enough to efficiently mix the 

particles. The state of the system at time t can be written as 

 𝑋1, 𝑋2, … . 𝑋𝑁 where 𝑋𝑖  are N non-negative integers. Let M be 

the total number of chemical reactions occurring in the 

system.Let 𝑘𝑖with𝑖 = 1, 2…M be rates of these M reactions. Let 

us denote the probability of finding the system in state 

 𝑋1, 𝑋2, … . 𝑋𝑁 at time tasP 𝑋1, 𝑋2 , … . 𝑋𝑁 , 𝑡 . 
Now we are interested to set up a Master equation for P. 

Consider the first reaction of Eq. (62). Let there are 𝑋1particles 

of type A1at time t,thenthetotal probability for first reaction to 

occurs in [t, t + dt] is equal to 𝑋1𝑘1𝑑𝑡. Similarly for the second 

reaction of Eq. (62), the total probability for reaction to occur 

is𝑋1𝑋2𝑘2𝑑𝑡, where 𝑋1and 𝑋2 is the number of particles of type 

A1 and A2respectively.The actual rate for a reaction is 

a𝑖
= k𝑖 number of reagents combinations for reaction i  

(63) 

If reaction l is of the type 𝐴𝑗 → 𝐴𝑖one has rate of gain of 

product particles of the form as below: 

𝐵𝑙 = 𝑘𝑙𝑋𝑗P 𝑋1, 𝑋2, … 𝑋𝑗 + 1,…𝑋𝑗 − 1, . . . 𝑋𝑁 , 𝑡  (64) 

Therefore the Master equation can be written as  
𝜕

𝜕𝑡
P 𝑋1 , 𝑋2, … . 𝑋𝑁 , 𝑡 

= − 𝑎𝑖P 𝑋1 , 𝑋2, … . 𝑋𝑁 , 𝑡 

𝑀

𝑖=1

+  𝐵𝑖

𝑀

𝑖=1

 

(65) 

The first term on the right side is due to the loss of reactants 

whereas the second term is due to the gain of product particles. 

 

XVII. RATE EQUATIONS 

The rate equations is defined as the time evolution of the 

average number of particlesstarting from the Master equation 

 One can derive an equation for the averages 

 𝑋𝑙 =  𝑋𝑙P 𝑋1, 𝑋2 , … . 𝑋𝑁 , 𝑡 

 𝑋 

 (66) 

with l = 1,2,…..N.  

The problem is to deduce equations in closed form as 

because of products of particle numbers Xkin rate equations (see 

Eq.(63)), we obtain rate equations in the form 
d

dt
 Xl 

=  gl  X1 ,  X2 , … . ,  XN  … . ,  Xi Xj … ,  Xk Xp Xq , … .   
(67) 

These equations can be simplified by 

neglectingthecorrelation between particle numbers so that we 
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can approximate 𝑋𝑖𝑋𝑗 …𝑋𝑘  ≈  𝑋1 ,  𝑋2 , … . ,  𝑋𝑘  . This way we 

obtain differential equations in closed form. These equations, 

although not exact, describe the evolution process of  𝑋𝑘 in a 

deterministic way and fluctuations about the average are not 

observed. The rate equations give an accurate description of the 

evolution of the system if the number of particles is large 

i.e.. 𝑋𝑖 ≫ 1. However fluctuationsdominate if the number of 

particles is low and the rate equation condition is not fulfilled. 

As an example for Eqs.(62), the rate equations for Lotka-

Volterra model, also known as predator-prey modelcan be 

written as  
𝑑

𝑑𝑡
𝑋1 = 𝑘1𝑋1 − 𝑘2𝑋1𝑋2 (68) 

𝑑

𝑑𝑡
𝑋2 = 𝑘2𝑋1𝑋2 − 𝑘3𝑋2 (69) 

where to simplify the notation the parenthesis  .   have been 

omitted. The two stationary and time independent solutions 

are𝑋1 = 𝑋2 = 0and𝑋1 =
𝑘3

𝑘2
, 𝑋2 =

𝑘1

𝑘2
. If we trysomesolutionnear 

the stationary point i.e. 𝑋1 = 𝜀 +
𝑘3

𝑘2
and 𝑋2 = 𝛿 + 𝑘1/k2 .We 

obtain 𝜀 𝑡 = 𝜀0 cos 𝜔𝑡 + 𝜙 , 𝛿 𝑡 = 𝜀0  𝑘1/𝑘3sin 𝜔𝑡 + 𝜙 , 
which shows system also has oscillatory solutions. 

 

XVIII. STOCHASTIC SIMULATIONS: THE GILLESPIE 

ALGORITHM 

The above reaction rate problems are solved by Gillespie 

algorithm.  Let 𝑃 𝜏, 𝑗  be the probability [6] that system stays in 

a configuration  𝑋1, 𝑋2, … . 𝑋𝑁 between time interval  𝑡 , 𝑡 +
 𝜏  and that next reaction occurs in the time interval  𝑡 +  𝜏, 𝑡 +
 𝜏 + 𝑑𝜏 and this reaction is of type j. Let 𝑎𝑗𝑑𝜏 is the probability 

that the reaction j occurs in the interval  𝑡 +  𝜏, 𝑡 +  𝜏 +
𝑑𝜏 ,while 𝑃0 𝜏  is the probability that no reactions occur 

in 𝑡, 𝑡 +  𝜏 .Then we can write  

𝑃 𝜏, 𝑗 = 𝑃0 𝜏 𝑎𝑗𝑑𝜏 (70) 

 The differential equation for 𝑃0 𝜏  can be written as 

𝑃0 𝜏 + 𝑑𝜏 = 𝑃0 𝜏  1 − 𝑎𝑖

𝑀

𝑖=1

𝑑𝜏  (71) 

 Let𝑎0 =  𝑎𝑖
𝑀
𝑖=1  is the total rate that some of the M 

reactionsoccur. Then integrating Eq.(71) with an initial condition 

𝑃0 0 = 1, we get  

𝑃0 𝜏 = 𝑒−𝑎0𝜏  (72) 

Gillespie Algorithm can be summarized as  
1) The system is in the state  𝑋1, 𝑋2 , … . 𝑋𝑁  at time t.Evaluate 

the rates 𝑎𝑖 for all M chemical reactions.Therefore 𝑎𝑖/𝑎0  is the 

probability of one of the M reactions.Let𝑎0 =  𝑎𝑖
𝑀
𝑖=1  is the total 

rate that M reactionsoccur. 

2) A random is chosen from the distribution 𝑒−𝑎0𝜏and thetimeis 

updated to 𝑡 = 𝑡 +  𝜏. 

3) Update the particle numbers 𝑋1, 𝑋2, … . 𝑋𝑁 accordingly if the 

reaction chosen is j.Go to step 1. 

 
Figure 10:Application of Gillespie algorithm in Simulation of 

the Lotka-Volterra model.The left figure shows trajectory in the 

plane 𝑌1 , 𝑌2. The figure on the right shows plot of 𝑌1 𝑡 and𝑌2(𝑡). 

 

XIX. THE ISING AND POTTS MODELS 

The Ising model, an important model of classical statistical 

mechanics,issimple to handle analytically through exact or 

approximate computations in one and twodimensions.Itis 

defined on a lattice in ddimensions, whose sites are occupied by 

a spin taking two values 𝑠 =  ±1. The energyof a configuration 

is given by 

𝐸 = −𝐽 𝑠𝑖
 𝑖𝑗  

𝑠𝑗  (73) 

Here the sum is extended to nearestneighborsandJ>0 is the 

coupling constant of the spins. The model has a phase transition 

in two and higher dimensions. The transition is from 

ferromagnetic phase at low temperature to a 

paramagneticphaseathigh temperature. The transition 

temperature 𝑇𝑐 for thetwo dimensional square lattice is  

𝑇𝑐 =
2𝐽

𝐼𝑛 1 +  2 
 (74) 

The ferromagnetic phase has a magnetization 𝑚 =   𝑠𝑖 ≠
 0 which is the average value of a spin. It is computed exactly for 

an infinite two dimensional square lattice and is given by  

𝑚 𝑇 =  1 − sinh−4 2𝐽/𝑇  
1

8 (75) 

 The magnetization shows power-law singularity near Tc 

𝑚~ 𝑇 − 𝑇𝑐 
𝛽  (76) 

 

Dimension      

2 0 1/8 7/4 1  

3 0.12 0.31 1.25 0.64  

 

Table 1: The critical exponents of Ising model in two and 

threedimensions evaluated though simulation techniques. The 

exponents are associated to singularities of specific heat (), 

magnetization (), susceptibility () and correlation length (). 

 The spin-spin correlation function for two spins separated 

by a distance r in the lattice also follows a power law  

 𝑠𝑖𝑠𝑗  ~𝑒
−𝑟/𝜉  (77) 

The correlation length𝜉, also diverges near Tcaccording as 

𝜉~ 𝑇 − 𝑇𝑐  
−𝜈  (78) 

 The model has been simulatedin two dimensions and the 

exact values of critical exponents are evaluated.However, the 

value of exponents in three dimensions is known only 

approximately. 



International Journal on Future Revolution in Computer Science & Communication Engineering                                                            ISSN: 2454-4248 

Volume: 4 Issue: 9                                                                                                                                                                                                        01 – 11 

_______________________________________________________________________________________________ 

11 
IJFRCSCE | September 2018, Available @ http://www.ijfrcsce.org                                                                 

_______________________________________________________________________________________ 

The Potts modelcan be called a generalization of the Ising 

model as it assumes spins can be found in q states i.e.𝑠𝑖  =
 0, 1, 2…𝑞 − 1.The energy of the q states is given as 

𝐸 = −𝐽 𝛿𝑠𝑖𝑠𝑗
 𝑖𝑗  

 (79) 

HereJ>0 and𝛿𝑠𝑖𝑠𝑗 is the Kronecker delta function.Therefore 

𝛿𝑚𝑛 = 1if m = n and 𝛿𝑚𝑛 = 0  otherwise. The q = 2 corresponds 

to the Ising model because  

𝛿𝑚𝑛 =
1

2
 2𝑚 − 1  2𝑚 − 1 +

1

4
 (80) 

and this identity is valid for m, n = 0, 1. Potts spins s=0,1 

transform to Ising spins 𝑠 = ±1 on applying the transformation 

equation 𝑠  =  2𝑠 − 1 . Therefore we get 𝐸𝑃𝑜𝑡𝑡𝑠   𝑠𝑖  =
1

2
𝐸𝐼𝑠𝑖𝑛𝑔   𝑠𝑖   −

𝐽

4
. 

Like Ising model, the Potts model shows phase transition 

from a high temperature phase withrandomlyoriented spins, to 

an aligned “ferromagnetic" phase. The alignment is along one of 

the q states. 

 

XX. THE MASTER EQUATION 

The stochastic evolution of the system evolving at discrete 

times Δ𝑡 is described by (16). 

𝑝 𝑡 + Δ𝑡 − 𝑝 𝑡 =  𝑃Δ𝑡 − 𝐼 𝑝(𝑡) (81) 

Here Iis the identity matrix. Taking limit Δ𝑡 → 0 , LHS 

becomes a time derivative of p(t) 
d

dt
𝑝 𝑡 = −𝐻𝑝(𝑡) (82) 

where 𝐻 = limΔ𝑡→0
𝐼−𝑃Δ𝑡

Δ𝑡
 (83) 

We have the columnsof P add up to 1 and therefore the 

elements of the columns of H add up to zero. Also the non-

diagonal elements of H are 

𝐻𝜇𝜈 = −𝑕 𝜈 → 𝜇  (84) 

 Here  𝑕 𝜈 → 𝜇 are transition probabilities per unit 

timefrom the state 𝜈 to the state 𝜇  i.e. transition probabilities 

per unit time.  

 Writing Eq. (82) in terms of matrix elements 
𝑑

𝑑𝑡
𝑝𝜇  𝑡 = − 𝐻𝜇𝜈 𝑝𝜈 𝑡 − 𝐻𝜇𝜇 𝑝𝜇  𝑡 

𝜈≠𝜇

 (85) 

First term has off diagonal elements whereas the second 

term has only the diagonal elements of the matrix H.   The sum 

of the elements on each column equals zero.Therefore using Eq. 

(84) we get what is called as the basic form of the Master 

Equation 
𝑑

𝑑𝑡
𝑝𝜇  𝑡 =  𝑕 𝜈 → 𝜇 𝑝𝜈 𝑡 − 𝑕 𝜇 → 𝜇 𝑝𝜇  𝑡 

𝜈≠𝜇

 (86) 

The two terms on the Right hand side of this equation are 

respectively the“gain" and “loss" terms. 

 

CONCLUSIONS 

An algorithm needs to satisfy the conditions of 

Ergodicityand Detailed Balance. There are many algorithms for 

which these conditions are satisfied. These are single spin flip 

algorithms like Metropolis, heat bath . . .  or are cluster flip type 

like Wolff algorithm. However these algorithms are for systems 

which converge to equilibrium. The simulation of coupled 

chemical reaction in the Lotka-Volterra model require the 

application of Gillespie algorithm  
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