
International Journal on Future Revolution in Computer Science & Communication Engineering ISSN: 2454-4248
Volume: 4 Issue: 4 641 – 649

641
IJFRCSCE | April 2018, Available @ http://www.ijfrcsce.org

__

Leveraging Self-Adaptive Dynamic Software Architecture

1 Mr. Sridhar Gummalla,

Associate Professor, CSE,Shadan college of

engineering & technology, Hyderabad,

Telengana, India.

sridhargummalla1975@gmail.com}

2 Dr. G. Venkateswara Rao,

Associate Professor, Gitam Institute Of Technology,

Gitam University, Visakhapatnam,

A.P, India

vrgurrala@yahoo.com}

Abstract:- Software systems are growing complex due to the technological innovations and integration of businesses. There is ever increasing

need for changes in the software systems. However, incorporating changes is time consuming and costly. Self-adaptation is therefore is the

desirable feature of any software that can have ability to adapt to changes without the need for manual reengineering and software update. To

state it differently robust, self adaptive dynamic software architecture is the need of the hour. Unfortunately, the existing solutions available for

self-adaptation need human intervention and have limitations. The architecture like Rainbow achieved self-adaptation. However, it needs to be

improves in terms of quality of service analysis and mining knowledge and reusing it for making well informed decisions in choosing adaptation

strategies. In this paper we proposed and implemented Enhanced Self-Adaptive Dynamic Software Architecture (ESADSA) which provides

automatic self-adaptation based on the runtime requirements of the system. It decouples self-adaptation from target system with loosely coupled

approach while preserves cohesion of the target system. We built a prototype application that runs in distributed environment for proof of

concept. The empirical results reveal significance leap forward in improving dynamic self-adaptive software architecture.

Index terms – Self-adaptation, dynamic software architecture, reusability, maintainability

__*****___

I. INTRODUCTION

Software systems drive the business in this age of digital world. The modern software systems should be equipped with highly

desired features in a distributed environment. Therefore software systems must become more versatile, flexible, resilient,

dependable, service-oriented, mashable, inter-operable, continuously available, robust, decentralized, energy-efficient,

recoverable, customizable, configurable, self-healing, configurable and self-optimizing by adapting to changing operational

contexts and environments. Traditional software is implemented under static decisions in analysis and design time based on

assumptions about the requirements and runtime environment. Therefore any unanticipated changes to the requirements or

runtime environment will lead to a manual maintenance process, which is unacceptable in critical systems. The existing self-

adaptive software architectures are utility based and making them quality-aware is a challenging problem to be addressed. Self-

adaptive software modifies its own behavior at runtime in response to changes in its operating environment. By operating

environment, we mean anything observable by the software system, such as end-user input, external hardware devices and

sensors, or program instrumentation. Application developers must answer several questions when developing a self-adaptive

software system. Under what conditions does the system undergo adaptation? Should the system be open-adaptive or closed-

adaptive? What type of autonomy must be supported? How often is adaptation considered? Under what circumstances is

adaptation cost-effective?

A system might, for example, modify itself to improve system response time, recover from a subsystem failure, or incorporate

additional behavior during runtime. A system is open-adaptive if new application behaviors and adaptation plans can be

introduced during runtime. A system is closed-adaptive if it is self-contained and not able to support the addition of new

behaviors. A wide range of autonomy might be needed, from fully automatic, self-contained adaptation to human-in-the-loop. A

wide range of policies can be used, from opportunistic, continuous adaptation to lazy, as-needed adaptation. The benefits gained

from a change must outweigh the costs associated with making the change. Costs include the performance and memory overhead

of monitoring system behavior, determining if a change would improve the system, and paying the associated costs of updating

the system configuration. A wide range of strategies can be used, from continuous, precise, recent observations to sampled,

approximate, historical observations.

II. RELATED WORK

Many researchers contributed towards dynamic self-adaptive software architectures. For instance architecture-based solutions [7],

[24], [29] and self-healing systems [35] were explored by characterizing the style requirements of systems. The following sub

sections provide more details of the review.

International Journal on Future Revolution in Computer Science & Communication Engineering ISSN: 2454-4248
Volume: 4 Issue: 4 641 – 649

642
IJFRCSCE | April 2018, Available @ http://www.ijfrcsce.org

__

Adaptation in Distributed Environment

Self-organizing systems that have provision for self-managing units that work with a common objective based on the software

architecture [23].They are based on the concept known as architectural formalism of Darwin [33]. There are many components in

the self-organizing system. Each one takes care of its own adaptation which is part of the whole system. To achieve this, each

component remembers the architecture model. It can get rid of single point of failure besides having distributed control, consistent

model. However, it causes significant overhead with respect to performance and needs an algorithm for global configuration. In

our work we could overcome this problem by supporting global reorganizing and trade off between local and distributed controls

while making adaption decisions.

Dynamic Architectures

Formal dynamic architectures can achieve self-adaptation. Towards this end many approaches came into existence. In [49]

proposed a high level language to describe an architecture formally in such a way that it can reconfigure when changes are made

to the components in the system and interconnections. The K-Component model proposed in [15] addresses two issues of the

dynamic architectures. They are safety of evolution and integrity. They also took care of meta-models required for graph

transformations. Many researchers focused on the programs called adaptation contracts to build applications that are self-adaptive

[31]. Darwin is an example for ADL and used for describing distributed systems with self-adaptive architecture including

operational semantics that take care of runtime dynamics of the system and reconfigurations [33]. Since the components and their

organizations can change at runtime there is mechanism to analyze changes. Thus Darwin can help to be used as general purpose

configuration language in distributed environment. Other known examples for ADL are PiLar [12] and ArchWare [37]. These are

used to model architectural layers that can separate concerns and improve performance. These approaches are based on the

reflective technologies for dynamic evolution. However, they assume that the implementations of systems are based on the formal

architectural descriptions. Our approach in this paper decouples target system and external mechanisms for improving the

adaption features.

Self-Adaption with Quality Attributes

Many architecture based solutions came into existence for self-adaptation. They are based on the quality attributes identified. For

instance, they focused on performance as explored in [6], [27], and [32]. Survivability is another quality attributes used [50].

There are some researchers who focused on the architectural styles while building self-adaptive architectures [26], [38]. The style-

based architectures had formal specifications that reflect different styles in self-adaptation. Many works in the literature are close

to our work in this paper. They include the work done by UCI research group [14] and the work of Sztajnberg [47]. An

architecture based solution for dynamic adaption at runtime was explored as an extension to [38]. This was achieved using

planning loop, execution loop and monitoring. Its focus was on the self-adaption of C2-style systems. Merging and architectural

differencing techniques were used in the implementation. Style-neutral ADL was explored y Sztajnberg and Loques besides many

other aspects such as architectural contracts, and architectural reconfigurations. The model had support for formal verification but

lacked in automated adaption of multiple objectives. In this paper, our approach addresses this problem. Rainbow framework [51]

tried to provide far better solution for dynamic self-adaptive software architecture. However, it can be further improved with two

additional modules as done by us in this paper. The modules are known as QoS analysers and Knowledge Mining. These modules

can improve the performance of the architecture.

The approaches found in the literature have certain limitations and issues that need to be resolved. Many were addressed by

Rainbow framework [51] such as exception handling and balance between local and global perspectives. It also focuses on

quantity of adaption with many building blocks to achieve self-adaption. Customizable elements and reusable infrastructures are

the two good features of Rainbow. However, the Rainbow framework has certain limitations as described here. Utility based

theory was used for best adaptation path under uncertainty. The utility based frameworks are not fully quality-aware. Quality of

Service (QoS) analyzers can be built to continuously monitor for improvement opportunities. The historical information usage is

not sophisticated in the existing frameworks. It can be improved with state-of-the-art data mining techniques for improving

decision making. All these issues are overcome in this paper with required modules incorporated into the framework.

III. PROPOSED SELF-ADAPTIVE DYNAMIC SOFTWARE ARCHITECTURE

In this section we describe the proposed self-adaptive dynamic software architecture. A self-adaptive software architecture can

cater to the dynamic needs of the software at run time. It can adapt to runtime situations. Select adaptation needs to work for

different kinds of systems and quality requirements. The adaptation is to be made with explicit operations that are chosen at run

time. Such architecture should provide an integrated solution that saves time and effort of engineers as it can adapt to situations

International Journal on Future Revolution in Computer Science & Communication Engineering ISSN: 2454-4248
Volume: 4 Issue: 4 641 – 649

643
IJFRCSCE | April 2018, Available @ http://www.ijfrcsce.org

__

without the need for writing code and update the software explicitly. Our framework satisfies these requirements by supporting

many mechanisms that lead to dynamic self-adaptation. Our architecture is known as Enhanced Self Adaptive Dynamic Software

Architecture (ESADSA). This work has been influenced by Rainbow framework [31]. Our architecture shown in Figure 1 extends

rainbow framework with two additional modules. They are known as Quality of Service (QoS) analyzers and History/Knowledge

Miner.

Figure 1 – The proposed framework named ESADSA

The framework has two layers known as architecture layer and system layer. Broadly, architecture layer represents self-adaptive

mechanism which is made up of many components that work in tandem with each other. The system layer represents the target

system and the plumbing components that are used to realize self-adaptation. There are two mechanisms for monitoring the target

system. They are known as probes and gauges. The observations are reported to model manager. The architecture evaluator

component is responsible to evaluate the model when model gets updates. It checks architectural constraints within acceptable

range. When evaluation concludes that there is a problem in the system, the evaluation management invokes adaptation manager.

The adaptation manager is responsible to initiate adaptation process and select a suitable adaptation strategy. Then the strategy

executor comes into picture in order to execute the strategy on the runtime system. This is achieved through system level effectors

that ensure realization of changes to the target system through self-adaptation.

There are three important aspects that are used to realize the software architecture. They are known as software architecture,

control theory, and utility theory. Self-adaptation is possible with proposed software architecture that makes it cost-effective.

Control theory and mechanisms ensure smooth adaptation. Utility theory helps in finding best strategy in self adaptation.

Moreover the proposed architecture has two components for optimization. These components are known as QoS analyzers and

knowledge miner.

Translation and Monitoring

International Journal on Future Revolution in Computer Science & Communication Engineering ISSN: 2454-4248
Volume: 4 Issue: 4 641 – 649

644
IJFRCSCE | April 2018, Available @ http://www.ijfrcsce.org

__

The translation infrastructure provided in architecture takes care of monitoring and action. This will help in bridging the gap

between the target system and architecture layer. It has monitoring mechanisms like probes and gauges. These mechanisms get

system states and update the model from time to time. The probe is responsible to measure target system while the gauge is

responsible to interpret the measure identified. The probing is done on the attributes such as process run time and CPU load.

The solution given in [51] has certain limitations. They are described here. Utility based theory was used for best adaptation path

under uncertainty. The utility based frameworks are not fully quality-aware. Quality of Service (QoS) analyzers can be built to

continuously monitor for improvement opportunities. The historical information usage is not sophisticated in the existing

frameworks. It can be improved with state-of-the-art data mining techniques for improving decision making. The modules

incorporated in the framework for overcoming the drawbacks of [51] are as follows. These modules improve the performance of

the architecture in making it robust and dynamic and self-adaptive software architecture.

QoS Analyzers

 These are the components in the architectural layer of the proposed framework.

 They take care of quality-aware analysis to exploit opportunities at runtime based on the QoS parameters like resource

utilization, response time, etc.

Building & Mining Knowledge Base

A holistic historical information maintenance and analysis is made using state-of-the-art data mining techniques for making well

informed decisions towards best adaptation path.

News.com Example with Self Adaptation

To demonstrate the usefulness of the proposed framework a hypothetical news web site by name News.com is taken as case study.

This application is distributed in nature. It is n-tier application that has web based client. The tiers in it include client tier, web tier,

business tier and data tier. It has a load balancer which will balance the load across the servers. In other words, the service is given

from different servers. There are web based clients to the application where the clients make stateless requisitions without a

session based approach. The requests are processed by different servers based on their availability.

Figure 2 – Technical architecture of News.com

As can be seen in Figure 2, the browser is in the client tier using which users can make request for news. Web server is in web tier

which invokes servlet that is responsible to process the request. However, the servlet cannot render news directly. It invokes a

remote server program known as RMI server. The RMI server is in business tier where business rules are applied. The RMI server

interacts with database which is the sources of the news. The tomcat server is a web server which has the following service

architecture.

International Journal on Future Revolution in Computer Science & Communication Engineering ISSN: 2454-4248
Volume: 4 Issue: 4 641 – 649

645
IJFRCSCE | April 2018, Available @ http://www.ijfrcsce.org

__

Figure 3 – Architecture of tomcat server

As can be seen in Figure 3, the tomcat server has support for different services and connectors. The connector may be coyote non-

ssl or warp on 8080 port number. The services may be tomcat-standalone or tomcat-apache. Each service can make use of an

engine that has required mechanism to have virtual hosts running different web applications. Web application is executed in

tomcat server and servlets are executed by the servlet container or web container located in tomcat server.

The business model of News.com is to provide news content to its customers with good response time and with optimal cost at the

server pool with operational budgets. However, the objectives of the News.com are not fulfilled when there are sudden spikes in

the number of news requests from its clients due to certain popular events. This has resulted in unacceptable latencies and reduced

customer satisfaction. The administrators of the application need to do certain configuration settings manually. They can either

increase the server pool size or switch to different content mode. When there is heavy load the administrators make decisions and

switch to text mode keeping cost and budgets of server pool in mind. The adaptation is done manually with the following

objectives.

 The default content mode of the servers is multimedia

 When situation demands switch to textual model

 Increase the server pool size as and when required

 Decrease the server pool size as and when required

Performing these things manually is time taking and error prone. In this paper we strive to automate this process by implementing

the proposed framework to make the News.com application self adaptive. Making well informed decisions automatically with

tradeoffs among different objectives is a challenging task handled by the proposed framework.

In case of News.com the server response time is monitored and measured in the architecture model. This is done by model

manager. The architecture evaluator ensures that the latency is not above given threshold. When it is not meeting the condition,

the evaluator triggers the adaptation manager to make necessary steps in order to activate more servers or switch to text mode to

reduce content quality. The system hooks are used by the strategy manager to make use of strategy that can handle the situation.

International Journal on Future Revolution in Computer Science & Communication Engineering ISSN: 2454-4248
Volume: 4 Issue: 4 641 – 649

646
IJFRCSCE | April 2018, Available @ http://www.ijfrcsce.org

__

News.com with Self Adaptation

The proposed framework is implemented using Java platform to realize self-adaptive dynamic architecture for News.com. The

implementation of the framework is to ensure the self adaptation. It is independent of any application like News.com. It can be

employed to any application that runs in the environment.

Figure 4 – News.com scenario with self adaptation

As shown in Figure 4, there are many clients making simultaneous requests to web server. The adaptation framework is there to

monitor the requests and ensure that the servers are automatically configured. There are four important operations done here. They

include increasing server pool size, decreasing server pool size, switching to text mode and switching to multimedia mode. The

QoS analyzer proposed in the framework takes care of quality analysis. This knowledge coupled with the history miner’s outcome

can bring about best possible pat for self adaptation.

IV. EXPERIMENTAL RESULTS

Experiments are made with live News.com application built in the laboratory. It is executed in distributed environment using

different machines connected to LAN. The number of requests is simulated and the latency and other observations are recorded.

Figure 5 – The adaptation time vs. number of requests

0

100

200

300

400

500

600

160 230 410 586 276

A
d

ap
ti

o
n

 T
im

e
(m

se
c)

No. of Request

International Journal on Future Revolution in Computer Science & Communication Engineering ISSN: 2454-4248
Volume: 4 Issue: 4 641 – 649

647
IJFRCSCE | April 2018, Available @ http://www.ijfrcsce.org

__

As can be seen in Figure 5, the trends in adaptation time when number of requests are increased or decreased are presented. The

horizontal axis shows number of requests used in different experiments while the vertical axis shows the adaptation performance.

Figure 6 – Adaptation accuracy

The proposed system is evaluated with 100 experiments and found that it shows very negligible false positives. However, it is the

proof that the system can be improved further in order to achieve 100% true positives.

Figure 7 – Latency of random requests

The latency of different requests randomly chosen are observed and plotted in the graph shown in Figure 7. The latency time is

presented in vertical axis while the number of random requests is shown in horizontal axis.

0

10

20

30

40

50

60

70

80

90

100

True Positive False Positive

A
d

ap
ti

o
n

 A
cc

u
ra

cy
 T

im
e

(m
se

c)

0

20

40

60

80

100

120

140

1 2 3 4 5

La
te

n
cy

 r
e

sp
o

n
se

 t
im

e
(m

se
c)

International Journal on Future Revolution in Computer Science & Communication Engineering ISSN: 2454-4248
Volume: 4 Issue: 4 641 – 649

648
IJFRCSCE | April 2018, Available @ http://www.ijfrcsce.org

__

Figure 7 – Quality of service in terms of throughput

As can be seen in Figure 7, the quality of service is measured in terms of throughput. The response time is considered with

different number of requests made to the News.com servers. The latency is recorded and presented.

V. CONCLUSIONS AND FUTURE WORK

Software systems have been evolving. The contemporary applications are able to drive businesses of multiple organizations that

form as an integrated set of business. Applications in such environment need changes dynamically. The changes are to be

incorporated in traditional approach by software engineers. However, this approach is costly and time consuming. To overcome

this problem, many self-adaptive frameworks came into existence. Rainbow is one such architecture which enables dynamic self-

adaptive software. However, the Rainbow architecture has specific limitations in terms of QoS analysis and knowledge mining in

making decisions for adaptation. In this paper we proposed and implemented a self-adaptive dynamic software architecture named

ESADSA which is based on a holistic approach with focus on QoS and knowledge mining for making expert decisions in adapting

strategies as part of self-adaptation. We built a prototype application to demonstrate the proof of concept. Our results revealed that

the proposed architecture significantly improves the self-adaptation performance. In future we focus on defining self-adaptive

dynamic software architecture for cloud based systems.

REFERENCES

[1] Norha M. Villegas,Gabriel Tamura,Rubby Casallas. (2011). A Framework for Evaluating Quality-Driven Self-Adaptive Software

Systems. ACM, p.20-30.

[2] Ahmed Elkhodary,Naeem Esfahani,Sam Malek. (2010). FUSION: A Framework for Engineering Self-Tuning Self-Adaptive Software

Systems. ACM, p.45-56.

[3] Andres J. Ramirez and Betty H.C. Cheng. (2010). Design Patterns for Developing Dynamically Adaptive Systems. ACM, p.901-1002.

[4] Pete Sawyer, Nelly Bencomo, Jon Whittle,Emmanuel Letier, Anthony Finkelstein. (2010). Requirements-Aware Systems. IEEE, p.90-

101.

[5] Narges Khakpour, Saeed Jalili , Carolyn Talcott , Marjan Sirjani , MohammadReza Mousavie. (2012). Formal modeling of evolving

self-adaptive systems. Elsevier. 78 , p.45-56.

[6] Jon Whittle Pete Sawyer Nelly Bencomo Betty H. C. Cheng Jean-Michel Bruel. (2010). RELAX: a language to address uncertainty

in self-adaptive systems requirement. Springer-Verlag London Limited, p.12-19.

[7] Danny Weyns, M. Usman Iftikhar, Didac Gil de la Iglesia, Tanvir Ahmad. (2010). A Survey of Formal Methods in Self-Adaptive

Systems.ACM, p.45-56.

[8] Daniel A. Menascé, Hassan Gomaa, Sam Malek, and João P. Sousa. (2011). SASSY: A Framework for Self-Architecting Service-

Oriented Systems. IEEE, p.90-101.

[9] Naeem Esfahani,Ehsan Kouroshfar,Sam Malek. (2011). Taming Uncertainty in Self-Adaptive Software. ACM, p.45-56.

[10] Narges Khakpour , Saeed Jalil,Carolyn Talcott,Marjan Sirjani,MohammadReza Mousavi. (2010). PobSAM: Policy-based Managing of

Actors in Self-Adaptive Systems. Elsevier. 263, p.20-30.

[11] Dhaminda B. Abeywickrama, Nicola Bicocchi, Franco Zambonelli. (2012). SOTA: Towards a General Model for Self-Adaptive

Systems.IEEE, p.90-101.

0

50

100

150

200

250

56 33 75 83

Q
u

al
it

y
o

f
se

rv
ic

e
 t

h
ro

u
gh

p
u

t
ti

m
e

(m
se

c)

Quality of Service request

International Journal on Future Revolution in Computer Science & Communication Engineering ISSN: 2454-4248
Volume: 4 Issue: 4 641 – 649

649
IJFRCSCE | April 2018, Available @ http://www.ijfrcsce.org

__

[12] Nikolas Roman Herbst, Nikolaus Huber, Samuel Kounev and Erich Amrehn. (2014). Self-adaptive workload classification and

forecasting for proactive resource provisioning. John Wiley & Sons, Ltd, p.901-1002.

[13] M. Usman Iftikhar Danny Weyns. (2012). A Case Study on Formal Verification of Self-Adaptive Behaviors in a Decentralized

System.ACM, p.12-19.

[14] THOMAS VOGEL and HOLGER GIESE,. (2014). Model-Driven Engineering of Self-Adaptive Software with EUREMA. ACM,

p.901-1002.

[15] Carlos Eduardo da Silva,Rogério de Lemos. (2011). Dynamic Plans for Integration Testing of Self-adaptive Software Systems. ACM,

p.12-19.

[16] DANNY WEYNS,SAM MALEK,JESPER ANDERSSON. (2012). FORMS: Unifying Reference Model for Formal Specification of

Distributed Self-Adaptive Systems. ACM, p.20-30.

[17] Daniel Sykes, Jeff Magee, Jeff Kramer. (2011). FlashMob: Distributed Adaptive Self-Assembly. ACM, p.901-1002.

[18] Rogério de Lemos, Holger Giese, Hausi A. Müller, Mary Shaw. (2010). Software Engineering for Self-Adaptive Systems: A Second

Research Roadmap (Draft Version of May 20, 2011).ACM, p.90-101.

[19] Mark Harman, Edmund Burke, John A. Clark and Xin Yao. (2012). Dynamic Adaptive Search Based Software Engineering. ACM,

p.45-56.

[20] Antonio Filieri, Carlo Ghezzi, Alberto Leva, Martina Maggio. (2011). Self-Adaptive Software Meets Control Theory: A Preliminary

Approach Supporting Reliability Requirements. IEEE, p.20-30.

[21] Nelly Bencomo,Amel Belaggoun,Valerie Issarny. (2013). Dynamic Decision Networks for Decision-Making in Self-Adaptive

Systems: A Case Study. IEEE, p.45-56.

[22] Antonio Filieri, Henry Hoffmann,Martina Maggio. (2014). Automated Design of Self-Adaptive Software with Control-Theoretical

Formal Guarantees. ACM, p.12-19.

[23] J.L. Pastrana , E.Pimentel , M.Katrib. (2011). QoS-enabledandself-adaptiveconnectorsforWebServices

compositionandcoordination.Elsevier. 37, p.901-1002.

[24] Markus Happe Enno Lu¨bbers Marco Platzner. (2013). A self-adaptive heterogeneous multi-core architecture for embedded real-time

video object tracking. Springer-Verlag London Limited, p.45-56.

[25] Francois Fouquet, Olivier Barais,Brice Morin Franck Fleurey. (2012). A Dynamic Component Model for Cyber Physical

Systems. ACM, p.20-30.

[26] Yuankai Wu, Yijian Wu, Xin Peng, Wenyun Zhao. (2010). Implementing Self-Adaptive Software Architecture by Reflective

Component Model and Dynamic AOP: A Case Study. IEEE, p.45-56.

[27] DANNY WEYNS,SAM MALEK,JESPER ANDERSSON. (2010). FORMS: a FOrmal Reference Model for Self-adaptation. ACM,

p.20-30.

[28] Dimitrios Al. Alexandrou, Ioannis E. Skitsas, and Gregoris N. Mentzas. (2011). A Holistic Environment for the Design and Execution

of Self-Adaptive Clinical Pathways. IEEE. 15 (1), p.90-101.

[29] Naeem Esfahani, Ahmed Elkhodary, and Sam Malek. (2013). A Learning-Based Framework for Engineering Feature-Oriented Self-

Adaptive Software Systems. IEEE. 39 (11), p.45-56.

[30] DANNY WEYNS,SAM MALEK,JESPER ANDERSSON. (2010). On Decentralized Self-Adaptation: Lessons from the Trenches and

Challenges for the Future. ACM, p.90-101.

