
International Journal on Future Revolution in Computer Science & Communication Engineering ISSN: 2454-4248

Volume: 4 Issue: 4 596 – 598

596

IJFRCSCE | April 2018, Available @ http://www.ijfrcsce.org

Comparative study of machine learning algorithms for anomaly detection in

Cloud infrastructure

1
Mr. Satish Kumbhar,

2
Nikita Paranjape,

3
Rasika Bhave,

4
Akshay Lahoti

1
Assistant Professor, Department of Computer Engineering, College of Engineering, Pune, Maharashtra 411005

2
B.Tech Student, Department of Computer Engineering, College of Engineering, Pune, Maharashtra 411005

3
B.Tech Student, Department of Computer Engineering, College of Engineering, Pune, Maharashtra 411005

4
B.Tech Student, Department of Computer Engineering, College of Engineering, Pune, Maharashtra 411005

Email:
1
ssk.comp@coep.ac.in,

4
lahotias14.comp@coep.ac.in

Contact:
1
+919860574798,

2
+918390023697,

3
+919607210054,

4
+919987985460

Abstract—Cloud is one of the emerging technologies in the field of computer science and is extremely popular because of its use of elastic

resources to provide optimized, cost-effective and on-demand services. As technology started to grow in scale and complexity, the need for

automated anomaly detection and monitoring system has become important. Inappropriate exploitation of Cloud resources can often lead to

faults like crashing of VMs, decreased efficiency of cloud system etc. thereby leading to violations of the Service Level Agreement (SLA).

These faults are often preceded by anomalies in the behavior of the VMs. Hence, the anomalies can be used as indicators of faults which

potentially violate the SLAs. We have created a system that will monitor the VMs, detect anomalies and warn the system administrator before

any problem escalates. We present in this paper a comparative study of various machine learning algorithms used for detecting anomalies in

cloud

Keywords- Anomaly detection; Machine Learning; Cloud infrastructure

__*****___

I. INTRODUCTION

Anomaly detection is the process of finding the patterns in a

dataset whose behavior is abnormal or unexpected. Such

unexpected behavior is also termed as an anomaly or an outlier

[9]. The anomalies cannot always be categorized as an attack

but it can be a surprising, previously unknown behavior which

can escalate into a bigger problem. This can potentially violate

the SLA [1].

Machine Learning automatically trains a model from

historic data without being explicitly programmed and

improves its accuracy with experience. This model predicts

values of data in near future. In anomaly detection, the machine

learning algorithm is supplied initially with the data. This data

is a mixture of normal and anomalous data that has been

labelled. These algorithms create models that are then used to

predict whether the cloud system is in anomalous state or not

[8].

This paper is organized as follows. Section II explains the

setting up of the infrastructure. Section III describes the

methods used to simulate anomalies on the VMs. Section IV

explains how the data was collected and preprocessed. Section

V describes the machine learning algorithms used. Section VI

will put forth the results we got on the testing data and lastly

Section VII describes the future scope of this research.

II. SETTING UP INFRASTRUCTURE

A. Cloud

OpenStack is a free and open-source software platform for

cloud computing, mostly deployed as infrastructure-as-a-

service, whereby virtual servers and other resources are made

available to customers [2]. It can be installed as mentioned in

[3]. For testing, we installed OpenStack on a machine which

has 4 processors, 32 GB of RAM.

B. Metrics monitoring tool

We have installed Zabbix, enterprise open monitoring

software for networks and applications, to monitor our virtual

machines and collect data. This entails installing a Zabbix

server on one virtual machine, and a Zabbix agent on all other

virtual machines that we wish to monitor. The agent monitors

the virtual machine it is installed on and periodically sends data

to the server (data is sent per minute). The server machine

needs to be configured to accept data from all the agents and

agents need to be configured to send data to the correct server

[4].

III. SIMULATING ANOMALIES

In order to find out how the VM behaves when an anomaly
occurs, we simulated some anomalies. There are several tools
to simulate such anomalies. These tools can be used as
commands on the terminal and do not require a user interface.
We used the stress tool [5]. By varying different command line
parameters passed to these tools, we were able to customize the
severity of each of the following anomalies [6].

A. CPU Utilization

It creates number of process specified by the user and

consumes the CPU resource for a specified amount of time.

Syntax: stress -c <no_of_processes> -t <time_to_run>

Example: stress -c 4 -t 180s

B. Available Memory

Available memory is the amount of RAM that is free.

International Journal on Future Revolution in Computer Science & Communication Engineering ISSN: 2454-4248

Volume: 4 Issue: 4 596 – 598

597

IJFRCSCE | April 2018, Available @ http://www.ijfrcsce.org

Syntax: stress -m --vm-bytes

<Number_of_units_of_memory> <Unit_of_memory> -t

<time_for_which_thge_process_is_run>s

Example: stress -m --vm-bytes 300M -t 180s

C. Disk IO wait Time

It is the amount of time CPU has spends doing read/write

operations. High disk IO time indicates that CPU has spent

more time doing disk input output instead of using that time

for computations.

Syntax: stress -d <Number_of_processes> --hdd-bytes

<Number_of_bytes><unit_of_bytes> -t <time for which the

process is run>s

Example: stress -d 2 --hdd-bytes 512M -t 180s

IV. DATA COLLECTION AND PREPROCESSING

We collected data that was anomalous and normal both so
that not only will our machine learning algorithms be able to
identify exactly which anomaly took place, but will also be able
to distinguish between a normal and an anomalous state. We
have collected equal amounts of data of each anomalous state
and the normal state. This is to ensure that the machine learning
algorithm will have equal opportunity to identify patterns of
each anomaly and normal data. If the normal data largely
outnumbered anomalous data, there is a possibility that the
model classifies all data as normal data and still gets good
accuracy on the testing dataset. This data is collected as each
metric per minute. Some data metrics were dependent upon
others. Eg average CPU load per 15 minutes was dependent on
CPU load per minute. We compiled only the independent
metrics. A full list of metrics given as an input to the various
machine algorithms are in table (1). We kept a track of when
we had simulated any anomalies. A python script took that data
as input and labelled the collected data. Normal data was class
1, memory overuse was class 2, swap space utilization - class 3,
CPU overload - class 4, excess disk I/O - class 5. This data is
stored as a csv file and can be used to train any model.

TABLE I. LIST OF EXTRACTED PARAMETERS

Avg CPU load/ minute Free swap space Incoming traffic on

virbr0

CPU steal time CPU idle time CPU user time

Outgoing traffic on
virbr0

No of processes run /
minute

CPU computation time

No. of CPU

interrupts/min

Free inodes on root Incoming traffic on

virbr0-nic

Used disk space on root CPU interrupt
handling time

Available memory size

Outgoing traffic on

virbr0-nic

Incoming traffic on

ens32

CPU soft interrupt

handling time

No. of CPU
switches/min

Free disk space on
root

Outgoing traffic on
ens32

CPU system time CPU I/o wait time Class assigned

V. MACHINE LEARNING ALGORITHMS

A. logistic Regression

 It is a logistic function to convert the output of a linear

regression into classes. Higher linearity between the feature and

the target variable contributes to better performance of the

Logistic Regression model. In the multiclass case as ours, the

training algorithm uses the one-vs-rest (OvR) scheme. The

logistic regression class of scikit-learn implements regularized

logistic regression using the „liblinear‟ library, „newton-cg‟,

„sag‟ and „lbfgs‟ solvers. It can handle both dense and sparse

input [7].

B. Linear discriminant analysis

Linear Discriminant Analysis can be used to perform

supervised dimensionality reduction, by projecting the input

data to a linear subspace consisting of the directions which

maximize the separation between classes. The dimension of the

output is necessarily less than the number of classes, so this is

in general a rather strong dimensionality reduction, and only

makes senses in a multiclass setting [10]. We have used LDA

to obtain the 10 most important parameters that best separate

the classes [7].

C. K-nearest neighbor

 K-NN is a simple, non-parametric lazy learning

technique used to classify data based on similarities in distance

metrics. The class of a new datapoint is dependent on classes of

K of its nearest datapoints.It does not attempt to construct a

general internal model, but simply stores instances of the

training data. Classification is computed from a simple majority

vote of the nearest neighbors of each point: a query point is

assigned the data class which has the most representatives

within the nearest neighbors of the point. We have used k = 5

for classification, owing to trial and error to get the best

possible accuracy for our dataset [7].

D. Decision Tree

CART (Classification and Regression Trees) supports

numerical target variables (regression) and does not compute

rule sets. CART constructs binary trees using the feature and

threshold that yield the largest information gain at each node.

Scikit-learn use an optimized version of the CART algorithm.

New data points are classified according to its feature values at

each level of the tree [7].

E. Naïve Bayes

There are many cases where the statistical dependencies or

the causal relationships between system variables exist. It can

be difficult to precisely express the probabilistic relationships

among these variables. To take advantage of this structural

relationship between the random variables of a problem, a

probabilistic graph model called Naïve Bayesian Networks

(NB) can be used. GaussianNB implements the Gaussian Naive

Bayes algorithm for classification. The likelihood of the

features is assumed to be Gaussian [7] [11].

International Journal on Future Revolution in Computer Science & Communication Engineering ISSN: 2454-4248

Volume: 4 Issue: 4 596 – 598

598

IJFRCSCE | April 2018, Available @ http://www.ijfrcsce.org

F. Support Vector Machine

These are a set of related supervised learning methods used

for classification and regression. Support Vector Machine

(SVM) is widely applied to the field of pattern recognition.

SVC and NuSVC implement the “one-against-one” approach

for multi- class classification. If n_class is the number of

classes, then n_class * (n_class - 1) / 2 classifiers are

constructed and each one trains data from two classes [7].

G. Neural Network

It is a set of interconnected nodes designed to imitate the

functioning of the human brain. Each node has a weighted

connection to all other nodes in neighboring layers. Individual

nodes take the input received from connected nodes and use

the weights together with a simple function to compute output

values. The user specifies the number of hidden layers as well

as the number of nodes within a specific hidden layer. In a

multiclass classification problem, the output layer of the neural

network contains several nodes. The Multilayer Perceptions

(MLP) neural networks have been very successful in a variety

of applications and producing more accurate results than other

existing computational learning models [6]. They are capable

of approximating to random accuracy, any continuous function

as long as they contain enough hidden units [7].

VI. EXPERIMENTAL RESULTS

We collected data over one month. This contained about

1000 data points of every anomaly and normal Table 2:

Performance of Algorithms on test data scenarios. We have

split this data into two chunks. 80% of the data is used to train

the models and 20% to test them. This was done with 10 fold

cross validation.

We used the following metrics to assess the different methods

Accuracy = TP / TP + TN

Precision = TP / TP + FP

Recall = TP / TP + FN

F measure = (2 * Precision * Recall) / (Precision + Recall)

TABLE II. PERFORMANCE OF ALGORITHM ON TEST DATA

Machine Learning Algorithm Accuracy Std. deviation

Logistic Regression 0.964298 0.002801

Linear Discriminant Analysis 0.982502 0.003136

K Neighbor Classifier 0.995051 0.001322

Decision Tree Classifier 0.999647 0.000433

Naive Bayes 0.762373 0.012196

Support Vector Machines 0.878913 0.010643

Neural Network 0.868010 0.061652

TABLE III. COMPARISON OF THE PERFORMANCE OF THE PRECISION,
RECALL AND F1-SCORE

Algorithm Precision Recall Fscore

Logistic Regression 0.97 0.97 0.97

Linear Discriminant Analysis 1.00 1.00 1.00

K Neighbor Classifier 1.00 1.00 1.00

Decision Tree Classifier 1.00 1.00 1.00

Naive Bayes 0.97 0.77 0.82

Support Vector Machines 0.93 0.88 0.88

Neural Network 0.85 0.89 0.86

We observed that we get really good results from logistic

regression, K nearest neighbor classifier and decision tree

classifier. SVM and Neural network results vary as we vary

the arguments that we pass to the classifier.

VII. FUTURE SCOPE

Here we have used only 7 popular algorithms for

comparisons. However there may be better algorithms that can

give higher accuracy. One can also think of combining two or

more algorithms for better results, for e.g. LDA can be used

for dimensionality reduction [10] and the reduced number of

parameters can be supplied as features in a neural network.

Reducing the parameters and extracting the essential ones will

decrease the amount of time required to train the algorithms.

Another area of study is the value of arguments passed to the

algorithms, which can change their performance values.

REFERENCES

[1] G. Aceto, A. Botta, W. de Donato and A. Pescapè, "Cloud
monitoring: Definitions, issues and future directions," 2012
IEEE 1st International Conference on Cloud Networking
(CLOUDNET), Paris, France, 2012, pp. 63-67.

[2] https://en.wikipedia.org/wiki/OpenStack

[3] https://docs.openstack.org/devstack/latest/

[4] https://tecadmin.net/install-zabbix-agent-on-ubuntu-and-debian/

[5] https://people.seas.harvard.edu/~apw/stress/

[6] https://linux.die.net/man/1/stress

[7] http://scikit-learn.org/stable/documentation.html

[8] A. Gulenko, M. Wallschläger, F. Schmidt, O. Kao and F. Liu,
"Evaluating machine learning algorithms for anomaly detection
in clouds," 2016 IEEE International Conference on Big Data
(Big Data), Washington, DC, 2016, pp. 2716-2721.

[9] G. Aceto, A. Botta, W. de Donato and A. Pescapè, "Cloud
monitoring: Definitions, issues and future directions," 2012
IEEE 1st International Conference on Cloud Networking
(CLOUDNET), Paris, France, 2012, pp. 63-67.

[10] F. Song, D. Mei and H. Li, "Feature Selection Based on Linear
Discriminant Analysis," 2010 International Conference on
Intelligent System Design and Engineering Application,
Changsha, 2010, pp. 746-749.

[11] F. Doelitzscher, M. Knahl, C. Reich and N. Clarke, "Anomaly
Detection in IaaS Clouds," 2013 IEEE 5th International
Conference on Cloud Computing Technology and Science,
Bristol, 2013, pp. 387-394

[12] Dr. Chinthagunta Mukundha,” Anomaly Detection in Cloud
Based Networks and Security Measures in Cloud Date Storage
Applications”, International Journal of Science and Research
(IJSR), ISSN (Online): 2319-7064

