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Abstract—Cloud is one of the emerging technologies in the field of computer science and is extremely popular because of its use of elastic 

resources to provide optimized, cost-effective and on-demand services.  As technology started to grow in scale and complexity, the need for 

automated anomaly detection and monitoring system has become important. Inappropriate exploitation of Cloud resources can often lead to 

faults like crashing of VMs, decreased efficiency of cloud system etc. thereby leading to violations of the Service Level Agreement (SLA). 

These faults are often preceded by anomalies in the behavior of the VMs. Hence, the anomalies can be used as indicators of faults which 

potentially violate the SLAs. We have created a system that will monitor the VMs, detect anomalies and warn the system administrator before 

any problem escalates. We present in this paper a comparative study of various machine learning algorithms used for detecting anomalies in 

cloud 
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I. INTRODUCTION  

Anomaly detection is the process of finding the patterns in a 

dataset whose behavior is abnormal or unexpected. Such 

unexpected behavior is also termed as an anomaly or an outlier 

[9]. The anomalies cannot always be categorized as an attack 

but it can be a surprising, previously unknown behavior which 

can escalate into a bigger problem. This can potentially violate 

the SLA [1]. 

Machine Learning automatically trains a model from 

historic data without being explicitly programmed and 

improves its accuracy with experience. This model predicts 

values of data in near future. In anomaly detection, the machine 

learning algorithm is supplied initially with the data. This data 

is a mixture of normal and anomalous data that has been 

labelled. These algorithms create models that are then used to 

predict whether the cloud system is in anomalous state or not 

[8].  

This paper is organized as follows. Section II explains the 

setting up of the infrastructure. Section III describes the 

methods used to simulate anomalies on the VMs. Section IV 

explains how the data was collected and preprocessed. Section 

V describes the machine learning algorithms used. Section VI 

will put forth the results we got on the testing data and lastly 

Section VII describes the future scope of this research. 

 

II. SETTING UP INFRASTRUCTURE 

A. Cloud 

OpenStack is a free and open-source software platform for 

cloud computing, mostly deployed as infrastructure-as-a-

service, whereby virtual servers and other resources are made 

available to customers [2]. It can be installed as mentioned in 

[3]. For testing, we installed OpenStack on a machine which 

has 4 processors, 32 GB of RAM. 

B. Metrics monitoring tool 

We have installed Zabbix, enterprise open monitoring 

software for networks and applications, to monitor our virtual 

machines and collect data. This entails installing a Zabbix 

server on one virtual machine, and a Zabbix agent on all other 

virtual machines that we wish to monitor. The agent monitors 

the virtual machine it is installed on and periodically sends data 

to the server (data is sent per minute). The server machine 

needs to be configured to accept data from all the agents and 

agents need to be configured to send data to the correct server 

[4].  

III. SIMULATING ANOMALIES 

In order to find out how the VM behaves when an anomaly 
occurs, we simulated some anomalies. There are several tools 
to simulate such anomalies. These tools can be used as 
commands on the terminal and do not require a user interface. 
We used the stress tool [5]. By varying different command line 
parameters passed to these tools, we were able to customize the 
severity of each of the following anomalies [6]. 

A. CPU Utilization 

It creates number of process specified by the user and 

consumes the CPU resource for a specified amount of time. 

Syntax: stress -c <no_of_processes> -t <time_to_run> 

Example: stress -c 4 -t 180s 

B. Available Memory 

Available memory is the amount of RAM that is free. 
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Syntax: stress -m --vm-bytes 

<Number_of_units_of_memory> <Unit_of_memory> -t 

<time_for_which_thge_process_is_run>s 

Example: stress -m --vm-bytes 300M -t 180s 

C. Disk IO wait Time 

 

It is the amount of time CPU has spends doing read/write 

operations. High disk IO time indicates that CPU has spent 

more time doing disk input output instead of using that time 

for computations. 

Syntax: stress -d <Number_of_processes> --hdd-bytes 

<Number_of_bytes><unit_of_bytes> -t <time for which the 

process is run>s 

Example: stress -d 2 --hdd-bytes 512M -t 180s 

 

IV. DATA COLLECTION AND PREPROCESSING 

We collected data that was anomalous and normal both so 
that not only will our machine learning algorithms be able to 
identify exactly which anomaly took place, but will also be able 
to distinguish between a normal and an anomalous state. We 
have collected equal amounts of data of each anomalous state 
and the normal state. This is to ensure that the machine learning 
algorithm will have equal opportunity to identify patterns of 
each anomaly and normal data. If the normal data largely 
outnumbered anomalous data, there is a possibility that the 
model classifies all data as normal data and still gets good 
accuracy on the testing dataset. This data is collected as each 
metric per minute. Some data metrics were dependent upon 
others. Eg average CPU load per 15 minutes was dependent on 
CPU load per minute. We compiled only the independent 
metrics. A full list of metrics given as an input to the various 
machine algorithms are in table (1). We kept a track of when 
we had simulated any anomalies. A python script took that data 
as input and labelled the collected data. Normal data was class 
1, memory overuse was class 2, swap space utilization - class 3, 
CPU overload - class 4, excess disk I/O - class 5. This data is 
stored as a csv file and can be used to train any model.  

 
TABLE I.   LIST OF EXTRACTED PARAMETERS 

Avg CPU load/ minute Free swap space Incoming traffic on 

virbr0 

CPU steal time CPU idle time CPU user time 

Outgoing traffic on 
virbr0 

No of processes run / 
minute 

CPU computation time 

No. of CPU 

interrupts/min 

Free inodes on root Incoming traffic on 

virbr0-nic 

Used disk space on root CPU interrupt 
handling time 

Available memory size 

Outgoing traffic on 

virbr0-nic 

Incoming traffic on 

ens32 

CPU soft interrupt 

handling time 

No. of CPU 
switches/min 

Free disk space on 
root 

Outgoing traffic on 
ens32 

CPU system time CPU I/o wait time Class assigned 

 
 

V. MACHINE LEARNING ALGORITHMS 

A. logistic Regression 

       It is a logistic function to convert the output of a linear 

regression into classes. Higher linearity between the feature and 

the target variable contributes to better performance of the 

Logistic Regression model. In the multiclass case as ours, the 

training algorithm uses the one-vs-rest (OvR) scheme. The 

logistic regression class of scikit-learn implements regularized 

logistic regression using the „liblinear‟ library, „newton-cg‟, 

„sag‟ and „lbfgs‟ solvers. It can handle both dense and sparse 

input [7]. 
 

B. Linear discriminant analysis 

Linear Discriminant Analysis can be used to perform 

supervised dimensionality reduction, by projecting the input 

data to a linear subspace consisting of the directions which 

maximize the separation between classes. The dimension of the 

output is necessarily less than the number of classes, so this is 

in general a rather strong dimensionality reduction, and only 

makes senses in a multiclass setting [10]. We have used LDA 

to obtain the 10 most important parameters that best separate 

the classes [7]. 
  

C. K-nearest neighbor 

   K-NN is a simple, non-parametric lazy learning 

technique used to classify data based on similarities in distance 

metrics. The class of a new datapoint is dependent on classes of 

K of its nearest datapoints.It does not attempt to construct a 

general internal model, but simply stores instances of the 

training data. Classification is computed from a simple majority 

vote of the nearest neighbors of each point: a query point is 

assigned the data class which has the most representatives 

within the nearest neighbors of the point. We have used k = 5 

for classification, owing to trial and error to get the best 

possible accuracy for our dataset [7]. 

D. Decision Tree 

CART (Classification and Regression Trees) supports 

numerical target variables (regression) and does not compute 

rule sets. CART constructs binary trees using the feature and 

threshold that yield the largest information gain at each node. 

Scikit-learn use an optimized version of the CART algorithm. 

New data points are classified according to its feature values at 

each level of the tree [7]. 

E. Naïve Bayes 

There are many cases where the statistical dependencies or 

the causal relationships between system variables exist. It can 

be difficult to precisely express the probabilistic relationships 

among these variables. To take advantage of this structural 

relationship between the random variables of a problem, a 

probabilistic graph model called Naïve Bayesian Networks 

(NB) can be used. GaussianNB implements the Gaussian Naive 

Bayes algorithm for classification. The likelihood of the 

features is assumed to be Gaussian [7] [11]. 
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F. Support Vector Machine 

These are a set of related supervised learning methods used 

for classification and regression. Support Vector Machine 

(SVM) is widely applied to the field of pattern recognition. 

SVC and NuSVC implement the “one-against-one” approach 

for multi- class classification. If n_class is the number of 

classes, then n_class * (n_class - 1) / 2 classifiers are 

constructed and each one trains data from two classes [7]. 

G. Neural Network 

It is a set of interconnected nodes designed to imitate the 

functioning of the human brain. Each node has a weighted 

connection to all other nodes in neighboring layers. Individual 

nodes take the input received from connected nodes and use 

the weights together with a simple function to compute output 

values. The user specifies the number of hidden layers as well 

as the number of nodes within a specific hidden layer. In a 

multiclass classification problem, the output layer of the neural 

network contains several nodes. The Multilayer Perceptions 

(MLP) neural networks have been very successful in a variety 

of applications and producing more accurate results than other 

existing computational learning models [6]. They are capable 

of approximating to random accuracy, any continuous function 

as long as they contain enough hidden units [7]. 

 

VI. EXPERIMENTAL RESULTS 

We collected data over one month. This contained about 

1000 data points of every anomaly and normal Table 2: 

Performance of Algorithms on test data scenarios. We have 

split this data into two chunks. 80% of the data is used to train 

the models and 20% to test them. This was done with 10 fold 

cross validation. 

We used the following metrics to assess the different methods 

Accuracy  = TP / TP + TN 

Precision  = TP / TP + FP 

Recall       = TP / TP + FN 

F measure = (2 * Precision * Recall) / (Precision + Recall) 

 

TABLE II.  PERFORMANCE OF ALGORITHM ON TEST DATA 

Machine Learning Algorithm  Accuracy Std. deviation 

Logistic Regression 0.964298 0.002801 

Linear Discriminant Analysis 0.982502 0.003136 

K Neighbor Classifier 0.995051 0.001322 

Decision Tree Classifier 0.999647 0.000433 

Naive Bayes 0.762373 0.012196 

Support Vector Machines 0.878913 0.010643 

Neural Network 0.868010 0.061652 

TABLE III.  COMPARISON OF THE PERFORMANCE OF THE PRECISION, 
RECALL AND F1-SCORE 

Algorithm Precision  Recall Fscore 

Logistic Regression 0.97 0.97 0.97 

Linear Discriminant Analysis 1.00 1.00 1.00 

K Neighbor Classifier 1.00 1.00 1.00 

Decision Tree Classifier 1.00 1.00 1.00 

Naive Bayes 0.97 0.77 0.82 

Support Vector Machines 0.93 0.88 0.88 

Neural Network 0.85 0.89 0.86 

We observed that we get really good results from logistic 

regression, K nearest neighbor classifier and decision tree 

classifier. SVM and Neural network results vary as we vary 

the arguments that we pass to the classifier. 

 

VII. FUTURE SCOPE 

Here we have used only 7 popular algorithms for 

comparisons. However there may be better algorithms that can 

give higher accuracy. One can also think of combining two or 

more algorithms for better results, for e.g. LDA can be used 

for dimensionality reduction [10] and the reduced number of 

parameters can be supplied as features in a neural network. 

Reducing the parameters and extracting the essential ones will 

decrease the amount of time required to train the algorithms. 

Another area of study is the value of arguments passed to the 

algorithms, which can change their performance values. 
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