
Junagadh, India

virat.jani@ngivbt.edu.in

Prof. Ashutosh A. Abhangi

 Computer Engineering

Noble Group of Institutions

Junagadh, India

 Ashutosh.abhangi@ngivbt.edu.in

Keywords- Big Data; Indexing; RDF Graph; Big data Management; Big Data Mapping

__*****___

I. INTRODUCTION

 The term big data applies to information that can„t be

processed or analyzed using traditional processes or tools.

Increasingly, organizations today are facing more and more

Big data challenges. Challenges include capture, storage,

analysis, data creation, search, sharing, transfer,

visualization, querying, updating and information privacy.

BIG DATA

II. RDF

 We can manage rdf items without destroy of items.

After join and reduce some items from database we use it in

future but instead of indexing items, using mapreduce

algorithm we can use reuse those items in future if we need.

By indexing items we can reduce the support or confidence of

sensitive rules. Minimum number of graph that need to be

modified to indexing a sensitive rule is derived. Try to achieve

fewer side effects and indexing.

Vertices
Resources : URLs

Attribute value : Literal values

Edges
Relationship : URIs

III. LITERATURE SURVEY

A. MapReduce-based Algorithms For Managing Big RDF

Graphs: State-of-The-Art Analysis, Paradigms, And Future

Direction .

 Big RDF (Resource Description Framework)

graphs, which populate the emerging Semantic Web, are the

core data structure of the so-called Big Web Data, the

“natural” transposition of Big Data on the Web. Managing

big RDF graphs is gaining momentum, essentially due to

the fact that this task represents the “baseline operation” of

fortunate Web big data analytics. Here, it is required to

access, manage and process large-scale, million-node (big)

RDF graphs, thus dealing with severe spatio-temporal

complexity challenges. A possible solution to this problem is

represented by the so-called MapReduce- model-based

algorithms for managing big RDF graphs, which try to

exploit the computational power offered by the MapReduce

processing model in order to tame the complexity above. In

this so-depicted scientific context, this paper provides a

Managing RDF Graphs using Mapreduce Algorithm with Indexing
Solution for Future Direction

M.E. Computer Engineering

Noble Group of Institutions

Abstract — “Indexing solution” based on Big RDF (Resource Description Framework) graphs with improve processing which populate the

semantic web, are the core data structure of the big web data, the natural transposition of big data on the web. Indexing data structure improve

processing on the big RDF graph. it was present the “baseline operation” of fortunate web big data analytic. this require process, access and

manage RDF graphs. It was dealing with severe temporal complexity. A solution to problem is represented by MapReduce model based

algorithm for indexing solution which try to exploit the computation power offered by the MapReduce processing model in indexing order. this

paper provide a survey on MapReduce based algorithm for state-of-the-art proposal using indexing solution.

International Journal on Future Revolution in Computer Science & Communication Engineering ISSN: 2454-4248
Volume: 4 Issue: 4 505 – 508

505

IJFRCSCE | April 2018, Available @ http://www.ijfrcsce.org

Hetal k. Makvana

critical survey on MapReduce-based algorithms for

managing big RDF graphs, with analysis of state-of-the-art

proposals, paradigms and trends, along with a

comprehensive overview of future research trends in the

investigated scientific area.

B. rdf chain: chain centric for scalable join processing on

rdf graph using mapreduce and hbase

 RDFChain showed the best performance in large non-

selective queries (Q2 and Q9). In particular, Q2 and Q9 have a

complex structure, a low selectivity due to unbound objects,

and a relationship of a chain pattern join. RDFChain greatly

reduced the size of the intermediate results by limiting RDF

triples to actual candidate rows which can satisfy a chain

pattern join. RDFChain also shows smaller number of storage

accesses than MAPSIN. Since Tcom is a common subset of

Tspo and Tops, it scales down the scan space. RDFChain

splits TPGs with compatible mappings and process the divided

TPGs in a map task. So, the number of map jobs decreases in

turn.

C. Scan-Sharing For Optimizing RDF Graph Pattern

Matching on MapReduce

 We extend our previous efforts on algebraic

optimization of RDF graph pattern queries to enable efficient

handling of graph pattern queries with multiple occurrences of

a property type; a common scenario in RDF queries. Our

approach formalizes and integrates the concept of “cloning” as

part of appropriate operators of our NTGA algebra, avoiding

the need for multiple scans of input relations required in

relational algebra-based query plans. Our extensive

experimental evaluations with various workloads have shown

the effectiveness and scalability of our intra-query scan-

sharing approach. Future directions will investigate additional

work sharing opportunities across sub queries that may

involve sharing across TG_Join operators.

D. Different Clustering algorithms for big data analytics: a

review

 We have considered several clustering methods which are

presently and widely used for big data analysis. This work

delivered an all-inclusive study of the clustering procedures

projected in the literature. Analyzing the online streamed data

can be considered in the future work. Still there is a huge gap

in examining the big data.

E. The Memory Challenge in Reduce Phase of MapReduce

Applications

 Memory has an important role in performance of Reduce

phase in many MapReduce applications. It not only can

degrade the performance, but also can lead to job failure due

to lack of memory. So, if an approach considers memory

correctly in the process of decision making about Reduce slots

configuration as well as number of Reduce tasks, it can

achieve high performance. Our memory aware approach,

Mnemonic, considers this fact and achieves high performance

compared with Memory Oblivious and Fine Grain approaches.

Our major contributions in this approach are 1) accentuating

the impact of memory on intermediate data management, 2)

investigating the slot configuration and configure memory size

of each slot, and 3) setting the number of Reduce tasks as well

as memory size of Reduce slots properly to eliminate job

failure and increase the performance of applications.

F. Scaling Unbound-Property Queries on Big RDF Data

Warehouses using

 RDF storage schema on HBase. We've also proposed

a MapReduce join algorithm for SPA RQL BGP processing

with evaluation results. As discussed in Section V, current

implementation can be enhanced in many ways which we can

adopt as future work. We hope we can implement a full

featured RDF store with HBase and MapReduce finally.

IV. PROPOSED WORK

MapReduce :

The MapReduce algorithm contains two important tasks,

namely Map and Reduce:

MapReduce process

 The input data of the Map Phase Join comes from all

joined triple queries formed in key/value pairs of the above

format. Mappers read values contained in each pair and break

them up to find the join variable. For each join variable

binding, they produce a key-value pair with the binding as the

key and the bindings for all other variables contained in the

input pair as the value. The pattern id is also added in the

value. Key-value pairs produced by mappers are sorted and

grouped together based on their key.

 The Map task takes a set of data and converts it into

another set of data, where individual elements are broken

down into tuples (key-value pairs).

 The Reduce task takes the output from the Map as an

input and combines those data tuples (key-value pairs) into a

smaller set of tuples. The reduce task is always performed

after the map job.

International Journal on Future Revolution in Computer Science & Communication Engineering ISSN: 2454-4248
Volume: 4 Issue: 4 505 – 508

506
 IJFRCSCE | April 2018, Available @ http://www.ijfrcsce.org

Let us now take at each of the phases :

Input Phase - Here we have a Record Reader that translates

each record in an input file and sends the parsed data to the

mapper in the form of key-value pairs.

Indexing phase - is an indexing all node in rdf graph

 Map - Map is a user-defined function, which takes a series of

key-value pairs and processes each one of them to generate

zero or more key-value pairs.

 Intermediate Keys - They key-value pairs generated by the

mapper are known as intermediate keys.

Combiner - A combiner is a type of local Reducer that groups

similar data from the map phase into identifiable sets. It takes

the intermediate keys from the mapper as input and applies a

user-defined code to aggregate the values in a small scope of

one mapper. It is not a part of the main MapReduce algorithm;

it is optional.

Shuffle and Sort - The Reducer task starts with the Shuffle and

Sort step. It downloads the grouped key-value pairs onto the

local machine, where the Reducer is running. The individual

key-value pairs are sorted by key into a larger data list. The

data list groups the equivalent keys together so that their

values can be iterated easily in the Reducer task.

Reducer - The Reducer takes the grouped key-value paired

data as input and runs a Reducer function on each one of them.

Here, the data can be aggregated, filtered, and combined in a

number of ways, and it requires a wide range of processing.

Once the execution is over, it gives zero or more key-value

pairs to the final step.

Output Phase − In the output phase, we have an output

formatter that translates the final key-value pairs from the

Reducer function and writes them onto a file using a record

writer. Let us try to understand the two tasks Map & Reduce .

MapReduce – Algorithm:

 MapReduce implements various mathematical

algorithms to divide a task into small parts and assign them to

multiple systems. In technical terms, MapReduce algorithm

helps in sending the Map & Reduce tasks to appropriate

servers in a cluster. These mathematical algorithms may

include the following .

 Sorting

 Searching

 Indexing

Sorting - Sorting is one of the basic MapReduce algorithms to

process and analyze data. MapReduce implements sorting

algorithm to automatically sort the output key-value pairs from

the mapper by their keys. Sorting methods are implemented

in the mapper class itself. In the Shuffle and Sort phase,

after tokenizing the values in the mapper class, the Context

class (user-defined class) collects the matching valued keys as

a collection.

Searching - Searching plays an important role in MapReduce

algorithm. It helps in the combiner phase (optional) and in the

Reducer phase. Let us understand how Searching works with

the help of an example.

Indexing - Normally indexing is used to point to a particular

data and its address. It performs batch indexing on the input

files for a particular Mapper.

Type of indexing

1) Hash table indexing

2) Tree based table

3) Multidimentional indexing indexing

4) Bitmape indexing

 We have using tree based indexing. It was effective

performance with MapReduce.

Flow Chart Of Proposed System

V. RESULT

Here we created rdf graph And we focused on indexing

ratio and we what to check its performance so we first apply
on to node.

Chart-2: rdf graph input

International Journal on Future Revolution in Computer Science & Communication Engineering ISSN: 2454-4248
Volume: 4 Issue: 4 505 – 508

507
 IJFRCSCE | April 2018, Available @ http://www.ijfrcsce.org

 Then we applied to proposed rdf graph and we get improved
result shown below.

Chart-2: hashtag Analysis

VI. CONCLUSION

 MapReduce Algorithm can help to manage big RDF

graphs any items. It was achieving effective and efficient

mapreduce based algorithms for supporting big RDF graph

management. RDF multiple databases and multiple tables are

join and reduce it referred to as a cluster. I will try to

perform RDF graph indexing we need in future then

perform manage on that then we can reuse it. Indexing data

structure improve query processing on big RDF graph After

map rules, it contains are selected for modification. So the

side effects will be indexing RDF graph.

References :

I. Alfredo Cuzzeerea, Rajkumar Buyya, Vincenzo

Passanisi, Giovanni Pilato, ”MapReduce-based

Algorithms For Managing Big RDF Graphs: State-

Of-The-Art Analysis, Paradigms, and Future

Direction”, © 2017 17
th

 IEEE/ACM Inernaional

Symposium on cluster, cloud and grid compuing.

II. Pilsik Choi1,2 *, Jooik Jung1 and Kyong-Ho Lee1,”

RDFChain: Chain Centric Storage for Scalable Join

Processing of RDF Graphs using MapReduce and

HBase”,© ISWC-PD 2013 in International Semantic

Web Conference.

III. HyeongSik Kim, Padmashree Ravindra, Kemafor

Anyanwu” Scan-

SharingforOptimizingRDFGraphPatternMatchingon

MapReduce “,2012 IEEE Fifth International

Conference on Cloud Computing 978-0-7695-4755-

8/12 $26.00 © 2012 IEEE DOI

10.1109/CLOUD.2012.14.

IV. Dr. Meenu Davel and Remant Gianey2 “Different

Clustering Algorithms for Big Data Analytics: A

Review”, SMART -2016, IEEE Conference ID:

39669 5th International Conference on System

Modeling & Advancement in Research Trends,

25th_27'h November, 2016. Copyright © SMART -

2016 ISBN: 978-1-5090-3543-4.

V. Seyed Morteza Nabavinejad, Maziar Goudarzi, “The

Memory Challenge in Reduce Phase of MapReduce

Applications”, doi 10.1109/tbdata.2016.2607756, ieee

transactions on big data journal of l atex class files,

vol. 14, no. 8, august 2015.

VI. Padmashree Ravindra, Kemafor Anyanwu, „Scaling

Unbound-Property Queries on Big RDF Data

Warehouses using MapReduce‟, (c) 2015, Copyright

is with the authors. Published in 18th International

Conference on Extending Database Technology

(EDBT), March 23-27, 2015, Brussels, Belgium:

ISBN 978-3-89318-067-7.

International Journal on Future Revolution in Computer Science & Communication Engineering ISSN: 2454-4248
Volume: 4 Issue: 4 505 – 508

508
 IJFRCSCE | April 2018, Available @ http://www.ijfrcsce.org

