
International Journal on Future Revolution in Computer Science & Communication Engineering ISSN: 2454-4248
Volume: 4 Issue: 4 425 – 430

425

IJFRCSCE | April 2018, Available @ http://www.ijfrcsce.org

Code Smell Detection Techniques and Process: A Review

Pratiksha Sharma (Author)

Department of Computer Science & Engineering

Chandigarh University, Gharuan Punjab, India

e-mail: pratikshasharma21192@gmail.com

Er. Arshpreet Kaur (Author)

Department of Computer Science & Engineering

Chandigarh University, Gharuan Punjab, India

e-mail: arshpreet.cse@cumail.in

Abstract— A code smell is a hint that something has turned out badly some place in your code. The idea of code smells was introduced to

characterize various different types of design shortcomings in code. Code and design smells are poor solutions to recurring implementation and

design problems. They may hinder the evolution of a system by making it hard for software engineers to carry out changes. In this paper, we

reviewed code smell detection tool like: Décor, InFusion, JDeodorant, PMD, Stench Blossom, etc. Furthermore, we discussed various code

smells detecting techniques. Code clones are indistinguishable fragment of source code which may be embedded deliberately or inadvertently.

Reusing code pieces through reordering with or without minor adjustments is general undertaking in programming advancement. We’ve

examined several papers to explore various tools and techniques used for code smell. In addition, we reviewed the process of code smell

detection.

Keywords- Code Smell, Detection tool (i.e, Infusion and Deodorant), fragment of source code.

__*****___

I. INTRODUCTION (HEADING 1)

Software maintenance is last and big-budgeted period of

SDLC[1]. The major concern behind product support is the

change of current programming framework by including new

functionalities, to rectify errors in the product framework or

because of the new necessities of the association that are not

distinguished amid the prerequisite stage. Yet, the most

extreme endeavours are required while expanding the current

programming by including new functionalities. One of the

systems utilized for programming support is Software Re-

engineering [2] is the most utilized.

1.1 CODE SMELL

The word “code smell” was presented by Kent Beck to

define those structural problems in the source code that can be

detected by experienced developers. As written by Kent Beck

[3]: “A code smell is a hint that something has gone wrong

anywhere in your code”.

The uncertain structure may not be causing serious harm (in

terms of bugs and failures) at the moment, but it has a negative

impact on the overall structure of the system and as on

sequence, on its quality factors. Code smells can clutter the

design of a system, making it harder to understand and

maintain. Moreover, the attendance of code smells can warn

about wider development difficulties such as wrong

architectural [4] choices or even bad management practices.

Code smells are structural characteristics of software that

may specify a code or design problem and can make software

hard to evolve and maintain. The concept was introduced by

Fowler, who de?ned 22 different kinds of smells [5]. Code

smells are strictly related to the practice of refactoring software

to enhance its internal quality [6]. As engineers recognize

terrible stenches in code, they ought to assess whether their

event indications at some pertinent corruption in the structure

of the code, and if positive, choose which refactoring ought to

be practical. Using a symbol, smells are like the symptoms of

possible diseases, and Refactoring. Operations may heal the

linked illnesses and remove their symptoms.

1.1.1 Bad Smells in Code

Code smell is any manifestation that demonstrating

something incorrectly. It for the most part demonstrates that the

code ought to be refectories or the total outline ought to be

reevaluated. The term appears to have been coined by Kent

Beck[4] .Usage of the term enlarged after it was contained in

Refactoring. Bad code exhibits certain characteristics that can

be rectified using Refactoring. These are called Bad Smells[3].

 Long Method: when method is too long means more

number of lines of code.

 Large Class: Modules that have large numbers of

instance variables and large number of lines of code.

Occasionally they are only used infrequently large

classes can also suffer from code duplication.

 Long Parameter List: Long constraint lists are hard to

recognise. Long parameter list means that a method

takes too many parameters.

 Comments: If the explanations are present in the code

more than the lines of code.

 Switch Statements: Switch statements may harvest

duplication. You can find comparable switch

statements scattered in the program in several places. .

Maybe classes and polymorphism would be more

proper.

 Lazy Class: Courses that are not doing much work and

number of method is null.

 Temporary Field: when some of the illustration

variables in a class are only used occasionally [5].

International Journal on Future Revolution in Computer Science & Communication Engineering ISSN: 2454-4248
Volume: 4 Issue: 4 425 – 430

426

IJFRCSCE | April 2018, Available @ http://www.ijfrcsce.org

 Duplicate Code: The equivalent code arrangement in

two or more places is a good sign that the code need to

be refectories.

 Dead Code: It’s a segment in source code of a

program which is executed but output is never used in

any other multiplication. The completing of dead code

wastes computation time and memory.

II. LITERATURE REVIEW

ThanisPaiva, et al., (2017) [7] evaluated and compared four

code notice identification apparatuses, to be specific inFusion,

JDeodorant, PMD, and JSpIRIT. Code smells allude to any side

effect in the source code of a program that conceivably shows a

more profound issue, ruining programming support and

advancement. Identification of code smells is trying for

engineers and their casual definition prompts the usage of

various recognition systems and apparatuses. These

apparatuses were connected to various adaptations of similar

programming frameworks, specifically Mobile Media and

Health Watcher, to figure the exactness and understanding of

code notice discovery instruments. They ascertained the

exactness of each device in the recognition of three code

smells: God Class, God Method, and Feature Envy.

Understanding was ascertained among devices and between

sets of apparatuses. One of our primary discoveries is that the

assessed devices display distinctive levels of precision in

various settings. For MobileMedia, with respect to assention,

we found that the general understanding between instruments

differs from 83 to 98% among all devices and from 67 to 100%

between sets of devices. We additionally directed an auxiliary

investigation of the advancement of code smells in both target

frameworks and found that, by and large, code smells are

available from the snapshot of formation of a class or strategy

in 74.4% of the instances of MobileMedia and 87.5% of Health

Watcher.

E. Kodhai, et al (2016) [8] presented an incremental clone

detection along with hybrid approach to locate clones in

multiple alterations of program. This hybrid technique is a

merger of metrics computation and textual analysis. In period

of last ten years, considerable research effort was made for

detection and expulsion of clones from software framework.

However, some practical tools are available for programming

languages. Majority of techniques used for clone detection are

limited one alteration of program. Both techniques of clone

detection and modification functionalities are united with Clone

Manager, is a tool for Java and C programs. This incremental

technique is an improved feature to Clone Manager tool. They

examined the improved Clone Manager tool with parameters

recall ratio and precision for 6 open source projects.

Dongjin Yu, et al., (2017) [9] proposed a novel technique of

code clone detection based on Java bytecode. Code clones are

commonly believed as unwanted for many reasons, despite of

ease provided to developers. Identification of code clones

improvise the quality of source code via software re-

engineering. Several methods were proposed in Java source

code while just few concerned to its bytecode. The Java

bytecode displays semantic nature of code. Using the block-

level code fragments extracted from bytecode, and

simultaneously identify code clones at both method level and

block level. During code clone detection process the

similarities of instruction sequences and call sequences are

calculated to enhance accuracy and performance. The results

prove that proposed method is more effective than existing

methods.

Yingnong Dang, et al., (2017) [10] described the encounter

of shifting XIAO, a code-clone detection and analysis approach

and supporting tool, to wide industrial practices i.e., (1) shipped

in Visual Studio 2012, a broadly used industrial IDE; (2)

deployed and intensively used at the Microsoft Security

Response Centre. Amid programming improvement, code

clones are normally delivered, as some of the same or

comparative code pieces spreading inside one or numerous

expansive code bases. Various research ventures have been

done on experimental investigations or apparatus bolster for

distinguishing or dissecting code clones. Nonetheless,

practically speaking, couple of such research ventures have

brought about generous industry adoption. According to our

encounters, innovation exchange is a fairly confounded

excursion that requirements huge endeavours from both the

specialized viewpoint and social perspective. From the

specialized perspective, huge endeavours are expected to adjust

an examination model to an item quality device that tends to

the requirements of genuine situations, to be coordinated into a

standard item or advancement process. From the social

viewpoint, there are solid needs to cooperate with professionals

to recognize executioner situations in mechanical settings,

make sense of the hole between an examination model and an

apparatus fitting the necessities of genuine situations, to

comprehend the prerequisites of discharging with a standard

item, being coordinated into an improvement procedure,

understanding their discharge rhythm, and so forth.

ShrutiJadon, (2016) [11] proposed to create a feature set by

analysing C program for fragments of code and matching

similarities. Code clones characterized as succession of source

code that happen more than once in a similar program or

crosswise over various projects are unfortunate as they

increment the span of program and makes the issues of excess.

Settling of bugs recognized in one clone require discovery of

all clones. Henceforth, it is basic to recognize and evacuate all

code clones in a program. The concentrate of past research chip

away at the code clone location was to discover

indistinguishable clones, or clones that are indistinguishable up

to identifiers and strict esteems. Be that as it may, identification

of comparable clones is regularly essential. Based on highlight

sets the grouping of calculation is being performed by utilizing

the Support Vector Machine (SVM) as a machine learning

International Journal on Future Revolution in Computer Science & Communication Engineering ISSN: 2454-4248
Volume: 4 Issue: 4 425 – 430

427

IJFRCSCE | April 2018, Available @ http://www.ijfrcsce.org

apparatus. The yield of the machine device would be the

closeness proportion with which the two C programs are

identified with each other and furthermore the class in which

they would happen. It was watched that the test consequences

of the instrument execution indicate identification of code

clones in the program and its exactness increments with the

expansion in number of occurrences.

Abdullah Sheneamer et al., (2015) [12] presented a hybrid

technique which utilised a coarse grain method to break down

the clones efficiently to enhance precision. In the event that two

parts of source code are indistinguishable to each other, they

are called code clones. Code clones present challenges in

programming upkeep and cause bug engendering. Coarse-

grained clone indicators have higher accuracy than fine-

grained, yet fine-grained identifiers have higher review than

coarse-grained. In this manner, we utilize a fine-grained

identifier to get extra data about the clones and to enhance

review. Our technique distinguishes Type-I and Type-2 clones

utilizing hash esteems for pieces, and gapped code clones

(Type-3) utilizing square discovery and resulting examination

between them utilizing Levenshtein separation and Cosine

measures with changing limits.

III. CODE SMELL DETECTION TOOLS

 Check style [13] Checkstyle2 has been industrialised

to help computer operator to write Java code that

adheres to a coding standard. It is able to perceive the

Large Class, Long Method, Long Parameter List, and

Duplicated Code smells.

 Décor [14] defined an approach that allows the

specification and automatic detection of code and

design smells (also named anti patterns). They

quantified six code smells by using a custom

language, automatically generated their detection

algorithms using patterns, and authorized the

algorithms in terms of precision and recall. Decor

platform for software analysis is an application to the

Decor Tool. In the following, with the name Decor we

mean the component developed for code smell

detection.

 InFusion It is current, commercial evolution of I

Plasma [5]. InFusion is able to sense more than 20

design errors and code smells, like Duplicated Code,

classes that break encapsulation, i.e. Data Class and

God Class, approaches and classes that are seriously

coupled, or ill-designed class hierarchies.

 I Plasma This tool [13] is a combined platform for

quality calculation of object-oriented systems that

includes support for all the necessary phases of

examination, from model abstraction, up to high-level

metrics based analysis. IPlasma5 is able to detect what

the authors define as code disharmonies, classified

into identity disharmonies, collaboration

disharmonies, and classification disharmonies. Code

smells like Repeated Code (named Important

Duplication), God Class, Feature Envy, and Refused

Parent Bequest, etc are considered as disharmonies.

 JDeodorant [15] is an Eclipse plugin that

automatically identifies the Feature Envy, God Class,

Long Method and Switch Statement (in its Type

Checking variant) code smells in Java programs[16].

The tool assists the user in determining an appropriate

arrangement of refactoring requests by determining

the possible refactoring transformations that solve the

identified difficulties, ranking them bestowing to their

impact on the design, presenting them to the

developer, and automatically applying the one

selected by the developer.

 PMD [17] scans Java source code and looks for

potential problems or possible bugs like dead code,

empty try/catch/finally/switch statements, unused

local variables or parameters, and duplicated cipher.

PMD is competent to detect Large Class, Long

Method, Long Parameter List, and Duplicated Code

smells, and allows the user to set the inceptions values

for the oppressed metrics.

 Stench Blossom [18] is smell detector supplies an

interactive visualization framework designed to give

programmers a quick and high level overview of the

scents in their code, and of their derivation. The

device is a module for the Eclipse condition that gives

the developer three disparate perspectives, which

progressively offer more data about the odors in the

code being imagined. The reaction is synthetic and

visual, and has the shape of a set of petals close to a

code element in the IDE editor. The size of a petal is

directly relative to the “strength” of the smell of the

code element it refers. The only possible technique to

find code smells is to physically browse the source

code, looking for a petal whose size is big enough to

make the user supposing that there is a code smell.

The tool is able to detect 8 smells.

International Journal on Future Revolution in Computer Science & Communication Engineering ISSN: 2454-4248
Volume: 4 Issue: 4 425 – 430

428

IJFRCSCE | April 2018, Available @ http://www.ijfrcsce.org

Table 1: Code Smell Detection Tools

Tool

Versi

on

(Year

) Type

Analys

ed

Langu

age Refactoring

Checksty

le

5.4.1

(2011)

Eclipse

Plugin,

Standalone Java No

Décor

1.0

(2009) Standalone Java No

iPlasma

6.1

(2009) Standalone

C++,

Java No

inFusion

7.2.11

(2010) Standalone

C,

C++,

Java No

JDeodra

nt

4.0.4

(2010)

Eclipse

Plugin Java Yes

PMD

4.2.5

(2009)

Eclipse

Plugin,

Standalone Java No

Stench

Blossom

1.0.4

(2009)

Eclipse

Plugin Java No

IV. CODE SMELL DETECTION PROCESS

Each smell is a manifestation that shows the infringement

of programming plan standards, for example, seclusion,

reflection, epitome, chain of command, and modifiability [19].

Programmed identification of code smells from source code is

a key to programming refactoring, upkeep, and quality

confirmation of source code. Diverse systems and apparatuses

apply distinctive techniques for the location of code smells.

The bland code notice recognition process may take after

advances (not really all) as delineated in Figure 1. Code notice

recognition strategies take source code or broke down source

code in various portrayals and details of code smells as info.

Code notice details are coordinated with analysed source code

by utilizing programming measurements, or diverse different

procedures and occasions of various odours are recuperated. A

few procedures additionally imagine recouped smells and

furthermore bolster refactoring of recuperated smells. The vast

majority of the code notice discovery procedures utilize

existing item arranged source code measurements that are

separated from other programming instruments. The exactness

of measurements construct methods is needy with respect to the

correct choice of source code measurements and their

understanding. Haralambiev et al. [20] additionally understood

that measurements construct systems need direction in light of

the understanding of measurements. A few systems register

specifically to source code measurements by performing static

investigation on the source code and afterward utilize these

measurements for recognizing code smells. In any case, not all

code scents can be identified with static examination of source

code [21]. A few procedures apply a blend of static and

dynamic examination techniques on source code and process

source code measurements that are utilized for the location of

code smells. Besides, it is additionally clear from the writing

that not all code scents can be identified with just the

investigation of source code, for example, parallel legacy or

shotgun surgery. The forming data is required to distinguish

such smells.

Figure 1: Generic Code Smell Detection Process [22]

V. CODE SMELL DETECTION TECHNIQUE

A key element for correlation of code smells identification

systems is the utilization of one ormore recognition procedures.

We quickly talk about code smelldetection procedures in this

sub-section. Earlier manual techniques were used to detect code

smell design principles. Such procedures are manual, prone to

error and time consuming and less effective in identification of

code smell in bigger systems [22]. Numerous code smell

discovery strategies and devices apply source code

measurements for recuperation of code smells from the source

code are discussed below:

 Metrics based techniques are restricted just to the

location of code notices that are relatively simple

to recognize. These methods are comparable in

ideas as they rely upon source code measurements,

however they contrast by the way they apply

measurements and what kinds of code smells they

centre around. The precision of measurements

based code notice location procedures is reliant on

the correct determination of limit esteems, which

are generally observational and untrustworthy.

 Symptoms based techniques utilize diverse

manifestations/documentations that are converted

into recognition calculations. The transformation

of side effects into recognition rules requires

examination and translation push to choose

International Journal on Future Revolution in Computer Science & Communication Engineering ISSN: 2454-4248
Volume: 4 Issue: 4 425 – 430

429

IJFRCSCE | April 2018, Available @ http://www.ijfrcsce.org

appropriate limit esteems. The impediment of

these strategies is that there is still no accord on

characterizing standard side effects with similar

elucidations. The exactness of these systems is low

a result of the distinctive translations of similar

side effects.

 Visualization based code smell identification

techniques utilize the semi-robotized process for

the discovery of code smells. These procedures

incorporate the ability of human mastery with the

mechanized identification process. The

impediment of these procedures is human exertion,

and they have versatility issues for vast

frameworks. These systems are additionally

blunder inclined as a result of wrong human

judgment.

 Search based code smell detection technique

apply diverse calculations for the identification of

code smells specifically from source code. Most

strategies in this class apply machine learning

calculations. These procedures gain from standard

outline and coding rehearses and looks at how

code digresses from these practices. The

accomplishment of these methods relies upon

quality informational collections and their

preparation. These strategies have impediments for

managing obscure and changing meanings of code

smells.

 Co-operative based techniques have the

inspiration to perform distinctive exercises

helpfully to improve execution of exercises. The

helpful based methods are moderately new, and

they enhance exactness and execution for code

smell detection. The first calculation produces

identification, and the second calculation creates

finders. The two calculations depend on hereditary

programming. Speculation of approach for the

location of different kinds of code smells is

sketchy.

 Probabilistic-based code smell detection

technique apply fuzzy rationale decides that

incorporate quantitative properties and

connections among classes. These methods rank

hopeful odours utilizing fluffy rationale induction

guidelines and handle vulnerability in the code

notice identification process. [23] Introduced a

factual examination based method to distinguish

five code smells.

VI. CONCLUSION

A code smell is an insight that something has turned out

seriously some place in your code. Code smells was acquainted

with portray different distinctive kinds of outline inadequacies

in code. Code and configuration smells are poor answers for

repeating usage and plan issues. They may thwart the

development of a framework by making it hard for

programming architects to complete changes. In this paper, we

checked on code notice identification instrument like: InFusion,

JDeodorant, PMD, Stench Blossom, and so on. Besides, we

talked about different code smells distinguishing strategies.

Code clones are vague piece of source code which might be

inserted intentionally or unintentionally. Reusing code pieces

through reordering with or without minor alterations is general

endeavour in programming progression. We've inspected a few

papers to investigate different devices and procedures utilized

for code smell. Also, we assessed the procedure of code notice

identification.

REFERENCES

[1] R. Koschke, Survey of research on software clones, in:

Duplication, Redundancy, and Similarity in Software,

Dagstuhl Seminar Proceedings, 2007, p. 24.

[2] C.K. Roy, J.R. Cordy, A Survey on Software Clone

Detection Research, Technical Report 2007-541, Queen’s

University at Kingston Ontario, Canada, 2007, p. 115.

[3] Nongpong, K. (2012). Integrating" code smells" detection

with refactoring tool support (Doctoral dissertation, The

University of Wisconsin-Milwaukee).

[4] Ito, Y., Hazeyama, A., Morimoto, Y., Kaminaga, H.,

Nakamura, S., &Miyadera, Y. (2014, August). A Method

for Detecting Bad Smells and ITS Application to Software

Engineering Education. In Advanced Applied Informatics

(IIAIAAI), 2014 IIAI 3rd International Conference on (pp.

670-675). IEEE.

[5] Danphitsanuphan, P., &Suwantada, T. (2012, May). Code

smell detecting tool and code smell-structure bug

relationship. In Engineering and Technology (S-CET),

2012 Spring Congress on (pp. 1-5). IEEE.

[6] Du Bois, B., Demeyer, S., &Verelst, J. (2004, November).

Refactoring-improving coupling and cohesion of existing

code. In Reverse Engineering, 2004. Proceedings. 11th

Working Conference on (pp. 144-151). IEEE.

[7] Paiva, Thanis, Amanda Damasceno, Eduardo Figueiredo,

and CláudioSant’Anna. "On the evaluation of code smells

and detection tools." Journal of Software Engineering

Research and Development 5, no. 1 (2017): 7.

[8] Kodhai, Egambaram, and SelvaduraiKanmani. "Method-

level incremental code clone detection using hybrid

approach." International Journal of Computer Applications

in Technology 54, no. 4 (2016): 279-289.

[9] Yu, Dongjin, Jie Wang, Qing Wu, Jiazha Yang, Jiaojiao

Wang, Wei Yang, and Wei Yan. "Detecting Java Code

Clones with Multi-granularities Based on Bytecode." In

Computer Software and Applications Conference

(COMPSAC), 2017 IEEE 41st Annual, vol. 1, pp. 317-326.

IEEE, 2017.

International Journal on Future Revolution in Computer Science & Communication Engineering ISSN: 2454-4248
Volume: 4 Issue: 4 425 – 430

430

IJFRCSCE | April 2018, Available @ http://www.ijfrcsce.org

[10] Dang, Yingnong, Dongmei Zhang, Song Ge, Ray Huang,

Chengyun Chu, and Tao Xie. "Transferring code-clone

detection and analysis to practice." In Proceedings of the

39th International Conference on Software Engineering:

Software Engineering in Practice Track, pp. 53-62. IEEE

Press, 2017.

[11] Jadon, Shruti. "Code clones detection using machine

learning technique: Support vector machine." In

Computing, Communication and Automation (ICCCA),

2016 International Conference on, pp. 399-303. IEEE,

2016.

[12] Sheneamer, Abdullah, and JugalKalita. "Code clone

detection using coarse and fine-grained hybrid

approaches." In Intelligent Computing and Information

Systems (ICICIS), 2015 IEEE Seventh International

Conference on, pp. 472-480. IEEE, 2015.

[13] Fontana, Francesca Arcelli, PietroBraione, and Marco

Zanoni. "Automatic detection of bad smells in code: An

experimental assessment." Journal of Object Technology

11, no. 2 (2012): 5-1.

[14] NaouelMoha, Yann-GaëlGuéhéneuc, Laurence Duchien,

and AnneFrançoise Le Meur. DECOR: A method for the

specification and detection of code and design smells.

IEEE Transactions on Software Engineering, 36(1):20–36,

January–February 2010. doi:10.1109/TSE. 2009.50.

[15] Abdelmoez, W., Kosba, E., &Iesa, A. F. (2014, January).

Risk-based code smells detection tool. In The International

Conference on Computing Technology and Information

Management (ICCTIM) (p. 148). Society of Digital

Information and Wireless Communication.

[16] Sreenu, K., & Rao, D. J. Performance-Detection of Bad

Smells In Code for Refactoring Methods

[17] Pessoa, T., Monteiro, M. P., & Bryton, S. (2012). An

eclipse plugin to support code smells detection. arXiv

preprint arXiv:1204.6492.

[18] Emerson Murphy-Hill and Andrew P. Black. An interactive

ambient visualization for code smells. In Proceedings of

the 5th international symposium on Software visualization,

SOFTVIS ’10, pages 5–14, Salt Lake City, Utah, USA,

2010. ACM. doi:10.1145/1879211.1879216.

[19] Peters R, Zaidman A. Evaluating the lifespan of code smells

using software repository mining. In proceedings of 16th

European conference on Software Maintenance and

Reengineering(ICSMR), pp. 41–416, 2012.

[20] Haralambiev H, Boychev S, Lilov D, Kraichev K. Applying

source code analysis techniques: a case study for a large

mission-critical software system. In Proceedings of

International Conference on Computer as a Tool, pp. 2–3,

2011.

[21] Ligu E, Chatzigeorgiou A, Chaikalis T, Ygeionomakis N.

Identification of refused bequest code smells. In

Proceedings of IEEE International Conference on Software

Maintenance(ICSM), pp.392-395, 2013.

[22] Rasool, Ghulam, and Zeeshan Arshad. "A review of code

smell mining techniques." Journal of Software: Evolution

and Process 27, no. 11 (2015): 867-895.

[23] Mathur, Nitin. "JAVA SMELL DETECTOR." (2011).

